
www.manaraa.com

UNDERSTANDING AND ADDRESSING MISCONCEPTIONS IN

INTRODUCTORY PROGRAMMING:

A DATA-DRIVEN APPROACH

by

Yizhou Qian

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Curriculum & Instruction

West Lafayette, Indiana

May 2018

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10791835

10791835

2018

www.manaraa.com

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. James D. Lehman, Chair

Department of Curriculum & Instruction

Dr. Timothy J. Newby

Department of Curriculum & Instruction

Dr. Susanne E. Hambrusch

Department of Computer Science

Dr. Aman Yadav

Department of Counseling, Educational Psychology and Special Education,

Michigan State University

Approved by:

Dr. Janet Alsup

Head of the Graduate Program

www.manaraa.com

iii

To Grace and Ada

www.manaraa.com

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. James Lehman, who has offered me great support and

guidance during my journey to the PhD degree. You are like an encyclopedia that knows all the

answers to my questions.

I also would like to thank my committee members, Dr. Tim Newby, Dr. Susanne Hambrusch, and

Dr. Aman Yadav, who have provided critical and valuable feedback to my research and given me

beneficial advice to my career.

Next, I would like to thank my wife, Panpan Zou, for all her sacrifice and support during my PhD

study.

Last but not least, I would like to thank all the friends I have met here at Purdue. I have learned a

lot from you, both academic and non-academic.

www.manaraa.com

v

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

ABSTRACT .. x

CHAPTER 1: INTRODUCTION ... 1

Student Misconceptions in Introductory Programming .. 1

Theoretical Framework ... 3

Conceptual Change Theories .. 4

Models of Feedback .. 5

Data-driven Feedback for Conceptual Change ... 7

Instructional Approaches and Tools for Addressing Student Misconceptions 7

Purpose of the Study ... 9

Research Design ... 9

Organization of the Remaining Chapters .. 10

CHAPTER 2: LITERATURE REVIEW .. 11

Misconceptions and Conceptual Change Theories ... 11

Definitions of Misconceptions .. 11

Conceptual Change Theories .. 12

Summary ... 14

Feedback in Education .. 14

Definitions of Feedback .. 15

Effects of Feedback ... 16

Timing of Feedback .. 16

Complexity of Feedback ... 18

Source of Feedback ... 20

Models of Feedback .. 22

Summary ... 25

Student Misconceptions in Introductory Programming .. 25

Understanding Student Misconceptions.. 26

Addressing Student Misconceptions ... 28

www.manaraa.com

vi

Instructional Approaches .. 28

Instructional Tools .. 29

Novice Programming Environments .. 29

Code Visualization Tools .. 29

Automated Assessment Systems .. 30

Summary ... 31

Contribution of this Study ... 31

CHAPTER 3: METHODOLOGY .. 33

Methodological Framework: Design-Based Research (DBR) .. 33

Settings and Participants ... 34

The Summer Residential Program and Courses ... 34

Participants .. 35

Mulberry System ... 36

Procedures ... 37

Overview ... 37

Stage 1 ... 37

Data Analysis .. 39

Compilation Errors ... 40

Test Errors ... 40

Stage 2 ... 43

Feedback for Compilation Errors.. 43

Feedback for Test Errors ... 45

Data Analysis .. 46

Quantitative Data Analysis ... 46

Qualitative Data Analysis ... 47

CHAPTER 4: RESULTS .. 49

Identification of Misconceptions .. 49

Common Compilation Errors .. 49

Misconception 1: Deficient Knowledge of Fundamental Java Program Structure 51

Misconception 2: Misunderstandings of Java Expressions .. 53

www.manaraa.com

vii

Misconception 3: Confusion about Java Variables ... 54

Common Test Errors ... 57

Misconception 1: Misunderstandings of Java Input ... 58

Misconception 2: Misunderstandings of Java Output ... 58

Misconception 3: Confusion about Java Operators .. 59

Misconception 4: Forgetting to Consider Special Cases .. 59

Overall Effects of Feedback ... 60

Difference in Overall Improvement Rates .. 60

Difference in Improvement Rates of Solutions with Common Errors.................................. 60

Difference in Improvement Rates of Solutions with and without Feedback 61

Effects of Feedback on Evolution of Students’ Misconceptions .. 62

Compilation Error Feedback Message with Best Improvement Rate 64

Compilation Error Feedback Message with Worst Improvement Rate 66

Test Error Feedback Message with Best Improvement Rate .. 67

Test Error Feedback Message with Worst Improvement Rate ... 69

Summary of Results .. 71

CHAPTER 5: DISCUSSION AND CONCLUSIONS ... 72

Student Misconceptions in Introductory Programming .. 72

Common Compilation Errors and Underlying Misconceptions ... 72

Common Test Errors and Underlying Misconceptions .. 75

Feedback for Conceptual Change ... 78

Overall Effects of Feedback .. 78

Evolution of Students’ Misconceptions .. 79

Implications .. 80

Limitations and Future Research Directions .. 82

Conclusions ... 84

REFERENCES ... 86

APPENDIX A. COURSE SYLLABUS ... 101

APPENDIX B. FEEDBACK MESSAGES .. 103

www.manaraa.com

viii

LIST OF TABLES

Table 4.1 Common Compilation Errors .. 50

Table 4.2 Difficult Problems... 57

Table 4.3 Common Test Errors ... 57

Table 4.4 Feedback for Compilation Errors ... 63

Table 4.5 Feedback for Test Errors... 63

Table 4.6 Selected Feedback Cases .. 64

www.manaraa.com

ix

LIST OF FIGURES

Figure 3.1. User Interface (UI) of Mulberry……………………………………………………...36

Figure 3.2. Timeline of the study…………………………………………………………………37

Figure 3.3. Example problem Area of Triangle and its test cases………………………………38

Figure 3.4. A screen shot of the webpage explaining Heron’s formula………………………….39

Figure 3.5. Two different students’ solutions producing the same wrong output………………...42

Figure 3.6. A student’s solutions to the Area of Triangle problem……………………………..48

Figure 4.1. An example Java program……………………………………………………………50

Figure 4.2. Examples of erroneous code about expressions………………………………………53

Figure 4.3. Examples of erroneous code about variables and variable operations…………….…55

Figure 4.5. Improvement rates of common errors………………………………………………..61

Figure 4.4. Overall improvement rates……………………………………………………….…..61

Figure 4.6. Improvement rates of group 2’s solutions without and with feedback……………....62

Figure 4.7a. Group 2 student code example of improvement of program name error……………65

Figure 4.7b. Group 1 student code example of improvement of program name error……………65

Figure 4.8. Mike’s code example of improvement…………………………………………….…66

Figure 4.9a. Group 1 student code example of improvement ……………………………………67

Figure 4.9b. Emily’s code example of improvement………………………………………….…68

Figure 4.10a. Alan’s code example of improvement……………………………………………..69

Figure 4.10b. Mark’s code example of improvement …………………………………………....70

www.manaraa.com

x

ABSTRACT

Author: Qian, Yizhou. PhD

Institution: Purdue University

Degree Received: May 2018

Title: Understanding and Addressing Misconceptions in Introductory Programming: A Data-

Driven Approach

Major Professor: James Lehman

With the expansion of computer science (CS) education, CS teachers in K-12 schools should be

cognizant of student misconceptions and be prepared to help students establish accurate

understanding of computer science and programming. This exploratory design-based research

(DBR) study implemented a data-driven approach to identify secondary school students’

misconceptions using both their compilation and test errors and provide targeted feedback to

promote students’ conceptual change in introductory programming. Research subjects were two

groups of high school students enrolled in two sections of a Java-based programming course in a

2017 summer residential program for gifted and talented students. This study consisted of two

stages. In the first stage, students of group 1 took the introductory programming class and used

an automated learning system, Mulberry, which collected data on student problem-solving

attempts. Data analysis was conducted to identify common programming errors students

demonstrated in their programs and relevant misconceptions. In the second stage, targeted

feedback to address these misconceptions was designed using principles from conceptual change

and feedback theories and added to Mulberry. When students of group 2 took the same

introductory programming class and solved programming problems in Mulberry, they received

the targeted feedback to address their misconceptions. Data analysis was conducted to assess

how the feedback affected the evolution of students’ (mis)conceptions.

Using students’ erroneous solutions, 55 distinct compilation errors were identified, and 15 of

them were categorized as common ones. The 15 common compilation errors accounted for 92%

of all compilation errors. Based on the 15 common compilation errors, three underlying student

misconceptions were identified, including deficient knowledge of fundamental Java program

structure, misunderstandings of Java expressions, and confusion about Java variables. In

www.manaraa.com

xi

addition, 10 common test errors were identified based on nine difficult problems. The results

showed that 54% of all test errors were related to the difficult problems, and the 10 common test

errors accounted for 39% of all test errors of the difficult problems. Four common student

misconceptions were identified based on the 10 common test errors, including misunderstandings

of Java input, misunderstandings of Java output, confusion about Java operators, and forgetting

to consider special cases.

Both quantitative and qualitative data analysis were conducted to see whether and how the

targeted feedback affected students’ solutions. Quantitative analysis indicated that targeted

feedback messages enhanced students’ rates of improving erroneous solutions. Group 2 students

showed significantly higher improvement rates in all erroneous solutions and solutions with

common errors compared to group 1 students. Within group 2, solutions with targeted feedback

messages resulted in significantly higher improvement rates compared to solutions without

targeted feedback messages. Results suggest that with targeted feedback messages students were

more likely to correct errors in their code. Qualitative analysis of students’ solutions of four

selected cases determined that students of group 2, when improving their code, made fewer

intermediate incorrect solutions than students in group 1. The targeted feedback messages appear

to have helped to promote conceptual change.

The results of this study suggest that a data-driven approach to understanding and addressing

student misconceptions, which is using student data in automated assessment systems, has the

potential to improve students’ learning of programming and may help teachers build better

understanding of their students’ common misconceptions and develop their pedagogical content

knowledge (PCK). The use of automated assessment systems with misconception identification

components may be helpful in pre-college introductory programming courses and so is

encouraged as K-12 CS education expands. Researchers and developers of automated assessment

systems should develop components that support identifying common student misconceptions

using both compilation and non-compilation errors. Future research should continue to

investigate the use of targeted feedback in automated assessment systems to address students’

misconceptions and promote conceptual change in computer science education.

www.manaraa.com

1

CHAPTER 1: INTRODUCTION

The development of computing technology and its role in driving innovation and

economic development in the 21st century has brought the need for expanding computer science

(CS) education (Webb et al., 2017). Many countries have included computer science courses in

their K-12 curriculum. In the U.S., Advanced Placement (AP) CS Principles, a new introductory

computer science course for high school students has been developed (desJardins, 2015). In the

U.K., computer science has become mandatory for students in K-12 schools (Brown, Sentance,

Crick, & Humphreys, 2014). In New Zealand, computer science has been a mainstream subject

since 2011 (Bell, Andreae, & Robins, 2014). Many other countries, such as Canada, Israel,

Poland, and so forth, have created new or improved existing computer science curricula (Webb

et al., 2017). With the expansion of computer science education, CS teachers in K-12 schools

should be cognizant of student misconceptions and be prepared to help students establish

accurate understanding of computer science and programming. This exploratory design-based

research study implemented a data-driven approach to identify secondary school students’

misconceptions and provide targeted feedback to promote students’ conceptual change in

introductory programming.

Student Misconceptions in Introductory Programming

Introductory CS courses are difficult for beginners (Guzdial, 2015; McCracken et al.,

2001), and students often exhibit misconceptions that impede their learning of introductory

programming (Altadmri & Brown, 2015; Sorva, 2013). Qian and Lehman (2017) summarized

literature regarding common misconceptions and other difficulties in introductory programming.

For instance, variables are a very basic concept in most of the programming languages, but

novices may mistakenly believe that the computer understands variables by the English

meanings of their names, even though variable names are arbitrary (Kaczmarczyk, Petrick, East,

& Herman, 2010; Sleeman, Putnam, Baxter, & Kuspa, 1986). Sequential execution of code is

another challenging concept for beginners (du Boulay, 1986; Simon, 2011). For instance,

students may mistakenly believe that when the Boolean expression of a conditional statement

becomes true, even if this occurs twenty lines below the conditional statement, the program will

www.manaraa.com

2

go back and execute the code in that conditional block (Pea, 1986). High-level concepts such as

classes, objects, instances, and their relationships in object-oriented programming (OOP) also

often confuse students (Guzdial, 1995; Holland, Griffiths, & Woodman, 1997; Ragonis & Ben-

Ari, 2005; Sorva, 2013).

Students in introductory programming courses may exhibit syntax errors, logic errors,

and other difficulties when writing programs to solve problems. For instance, novice students

often make syntactic mistakes in their code, such as mismatching parentheses, missing

semicolons, failing to declare a variable, using malformed Boolean expressions, mistakenly

using the assignment operator (=) instead of the comparison operator (==), and so forth

(Altadmri & Brown, 2015; Jackson, Cobb, & Carver, 2005; Sirkia & Sorva, 2012). In addition,

they usually lack well-established programming strategies (Clancy & Linn, 1999; Davies, 1993;

Lister, Simon, Thompson, Whalley, & Prasad, 2006; Sajaniemi & Prieto, 2005; Soloway, 1986)

and then face difficulties with planning, composing, and debugging programs, including failing

to understand and decompose the task (Muller, 2005; Robins, Haden, & Garner, 2006),

forgetting to test boundary conditions and unexpected cases (Fisler, Krishnamurthi, & Siegmund,

2016; Sajaniemi & Kuittinen, 2005; Spohrer & Soloway, 1986), and inappropriately tracing their

code and locating errors (Ben-David Kolikant & Mussai, 2008; Fitzgerald et al., 2008; McCauley

et al., 2008).

Qian and Lehman (2017) described factors that may contribute to students’

misconceptions in learning to program. Major factors that contribute to students’ misconceptions

include interference caused by prior knowledge (Clancy, 2004; Miller, 2014) and flawed mental

models of computer operation (Guzdial, 2015; Sorva, 2013). Novice students may mistakenly

use concepts they learned in math to understand programming concepts (e.g., variables), which

look similar but mean something quite different (Clancy, 2004; Qian & Lehman, 2017). As most

programming languages are natural-language-based, students’ existing knowledge of natural

language may hinder their construction of the meanings of programming concepts (Bruckman &

Edwards, 1999; du Boulay, 1986; Miller, 2014). In addition, unlike experts, beginners’

conceptual knowledge is often fragmentary and not organized into meaningful patterns (Clancy

& Linn, 1999; Lister, 2011; McCauley et al., 2008; Sajaniemi & Prieto, 2005; Whalley et al.,

2006). Thus, they may only be able to understand programs in a line-by-line manner and then fail

to holistically evaluate and properly debug a program (Ben-David Kolikant & Mussai, 2008;

www.manaraa.com

3

Lister et al., 2006). Students in introductory programming courses also often hold flawed mental

models of the notional machine, which refers to an abstract computer that executes code in the

programmer’s mind (du Boulay, 1986; Guzdial, 2015; Sorva, 2013). Without correct

understanding of the notional machine, a student may fail to understand the sequential execution

of statements (du Boulay, 1986; Simon, 2011).

Student misconceptions can interfere with learning, and a variety of factors may

contribute to these inaccurate understandings (Clancy, 2004; Qian & Lehman, 2017; Smith,

diSessa, & Roschelle, 1994). While previous studies have cataloged a broad range of student

misconceptions including syntax errors and other difficulties caused by misconceptions, most of

them have focused on post-secondary students (e.g., Altadmri & Brown, 2015; Jackson et al.,

2005; Sirkia & Sorva, 2012). As CS education has been expanding into K-12 schools, more

information is needed to understand misconceptions among pre-college learners who take

introductory programming courses. This study investigated misconceptions among secondary

school students taking an introductory programming course.

Theoretical Framework

In the learning of science, conceptions refer to students’ understandings of academic

concepts (Taber, 2013). Misconceptions are problematic conceptions held by students which are

inconsistent with normative conceptions and often entrenched (Clement, 1993; Smith et al.,

1994; Taber, 2013). Similarly, in the learning of programming, student misconceptions are

students’ deficient or erroneous understandings of programming concepts (Qian & Lehman,

2017; Sorva, 2013; Taber, 2013). In previous literature, a variety of terms have been used to

describe students’ inaccurate understandings in learning to program, such as “misconceptions”

(Sorva, 2013), “difficulties” (du Boulay, 1986), “errors” (Sleeman et al., 1986), “bugs” (Pea,

1986), “mistakes” (Altadmri & Brown, 2015), and so forth. With these different terms,

researchers have discussed students’ syntax errors in the code, misunderstandings of

programming concepts, difficulties in writing and debugging programs, and so on (Sorva, 2013).

While these different misunderstandings are often lumped together, qualitative differences exist

between a simple syntax error in a loop statement, conceptual misunderstandings of loops, and

challenges of using loop constructs to solve problems. However, these difficulties are related to

each other, and problems of students’ conceptual understandings are the pivot that may lead to

www.manaraa.com

4

syntactic errors, logic errors, and other difficulties (Bayman & Mayer, 1988; de Raadt, 2008;

Ebrahimi, 1994; Lopez, Whalley, Robbins, & Lister, 2008; Qian & Lehman, 2017). Thus, to help

students succeed in introductory programming, it is vital to understand and address student

misconceptions.

Conceptual Change Theories

In science and mathematics education, researchers and educators have developed

conceptual change theories to address student misconceptions. Conceptual change denotes the

process through which learners’ existing (mis)conceptions develop into intended normative

conceptions (Duit & Treagust, 2003; Vosniadou & Skopeliti, 2014). Conceptual change theories

inform the process of modifying student misconceptions to help students establish normative

understandings of the academic concepts to be learned (Vosniadou & Skopeliti, 2014).

Researchers of conceptual change theories share the ideas that (a) learners’ own pre-instructional

conceptions (also called naïve knowledge) are based on their daily experience; (b) learners’

existing knowledge has an impact on the acquisition of new knowledge; and (c) student

misconceptions are often entrenched and conceptual change is time consuming (Özdemir &

Clark, 2007; Taber, 2013).

Two conflicting theoretical perspectives, revolutionary conceptual change and

evolutionary conceptual change, have emerged over the decades of research (Abimbola, 1988;

Özdemir & Clark, 2007; Taber, 2013). The revolutionary conceptual change perspective posits

that learners’ existing naïve knowledge is organized in a theory-like manner, and learners use

their naïve theories to interpret and construct new concepts (Özdemir & Clark, 2007; Posner,

Strike, Hewson, & Gertzog, 1982). Thus, learners’ existing misconceptions are a potential barrier

to new learning, and conceptual change is a revolutionary process that replaces learners’ naïve

theory-like knowledge structures with intended scientific conceptions. According to the

revolutionary conceptual change perspective, successful instruction needs to help students

confront their misconceptions by presenting the academic concept to students in a way that

produces cognitive conflicts, and then help students abandon their misconceptions and adopt the

new conceptions (Abimbola, 1988; Posner et al., 1982).

In contrast, the evolutionary conceptual change perspective postulates that learners’ prior

naïve knowledge consists of relatively unstructured collections of quasi-independent elements

www.manaraa.com

5

(Abimbola, 1988; diSessa, 1993). From this viewpoint, conceptual change is an evolutionary

process of correcting and enhancing existing knowledge elements and establishing and refining

the relationships among conceptions. Therefore, learners’ existing (mis)conceptions should be

considered as resources for constructing new concepts, and the purpose of instruction is to

reconcile students’ prior (mis)conceptions with new learning, rather than replacing them

(Abimbola, 1988; diSessa, 2013, 2014).

While debate between the two perspectives is ongoing (see diSessa, 2013 and Vosniadou,

2013), the current trend in conceptual change research has shown convergence (Vosniadou &

Skopeliti, 2014). Researchers agree that evolutionary conceptual change is a prerequisite of

revolutionary conceptual change (Taber, 2013; Vosniadou & Skopeliti, 2014), and success in

conceptual change requires tracking the development of learners’ (mis)conceptions using real-

time data of learning (diSessa, 2014; Vosniadou, 2013). With precise understanding of the nature

and current status of student (mis)conceptions, instructors can choose proper strategies for

accomplishing conceptual change, such as “directly challenging student conceptions,” “ignoring

them and simply teaching the canonical ideas,” or “seeing learners’ conceptions as useful (or

necessary) starting points that need to be modified over time through a multistage conceptual

trajectory” (Taber, 2014, p. 40). While conceptual change theories have been widely adopted to

understand the development of student knowledge in math and science (Vosniadou & Skopeliti,

2014), they have received relatively little attention in CS education to date (Qian & Lehman,

2017; Sorva, 2012). This study applied conceptual change theories to students’ learning of

introductory programming in computer science.

Models of Feedback

Feedback is essential to help learners successfully construct new knowledge. Historically,

researchers have defined feedback from three different perspectives: feedback as motivator,

feedback as reinforcement, and feedback as information (Kulhavy & Wager, 1993). According to

the motivational viewpoint, feedback is a motivator or incentive for enhancing learning

performance. However, the mix of motivation and feedback makes it difficult to conceptualize

how feedback works (Kulhavy & Wager, 1993). The feedback-as-reinforcement perspective

posits that feedback producing a satisfying effect is likely to make the response repeated in the

future. This idea was derived from E. L. Thorndike’s Law of Effect and greatly developed by B.

www.manaraa.com

6

F. Skinners’ study of programmed instruction (Kulhavy & Wager, 1993; Mory, 2004). These

researchers believed that telling the learner his or her answer is correct would increase the

probability of making the same right response in the future. Hence, studies of the feedback-as-

reinforcement perspective mainly focused on learners’ correct responses and often ignored errors

(Kulhavy, 1977). Instead of concentrating on correct responses, the feedback-as-information

perspective emphasizes learners’ erroneous responses and considers feedback as information for

correcting learners’ errors and misunderstandings (Butler & Winne, 1995; Hattie & Timperley,

2007; Kulhavy & Wager, 1993; Shute, 2008). While researchers nowadays do not deny that

feedback in education may lead to changes in learners’ motivation and reinforcement of learning,

they agree that feedback in essence is information for facilitating learning (Hattie & Gan, 2011;

Hattie & Timperley, 2007; Shute, 2008). More specifically, feedback is information provided by

an agent to change learners’ thinking or behavior for the purpose of enhancing learning (Hattie &

Timperley, 2007; Shute, 2008).

A number of factors may influence the effect of feedback on learning, including timing,

complexity, and sources of feedback (Hattie & Timperley, 2007; Kulhavy & Wager, 1993; Van

der Kleij, Feskens, & Eggen, 2015), and researchers have developed different models of

feedback to explain how feedback facilitates learning and provide guidelines for designing

effective feedback. Well-known models of feedback include the certitude model with a focus on

learner response confidence (Kulhavy & Stock, 1989), the five-stage model emphasizing

learners’ mindful reflection (Bangert-Drowns, Kulik, Kulik, & Morgan, 1991), and the

connectionist model concentrating on the retention of initial lesson responses (Clariana, Wagner,

& Murphy, 2000). Each of these models mainly addresses one factor that may contribute to

feedback’s effects, such as confidence (Kulhavy & Stock, 1989), self-regulation (Bangert-

Drowns et al., 1991; Butler & Winne, 1995), and timing (Clariana et al., 2000).

Recently, a more inclusive model, the visibility model of feedback, with an emphasis on

visualizing learners’ current knowledge states, has been developed and widely accepted (Hattie

& Gan, 2011; Hattie & Timperley, 2007). According to the visibility model, feedback reduces

“the discrepancy between what is understood and what is aimed to be understood” (Hattie &

Gan, 2011, p. 257-258). The crux of feedback design is to make the discrepancy visible to both

the instructor and the learner. The visibility means that effective feedback needs to answer three

major questions: “Where am I going?,” “How am I going?,” and “Where to next?” (Hattie &

www.manaraa.com

7

Timperley, 2007). In other words, procedures for designing effective feedback include (1) clearly

describing the desired learning outcomes, (2) precisely analyzing learners’ current knowledge

states, and (3) identifying the discrepancy between the current states and the intended outcomes

and providing information for reducing the discrepancy and enhancing learning (Hattie & Gan,

2011; Hattie & Timperley, 2007). From this point of view, the problem of traditional feedback

design is that it neglects to examine learners’ current (mis)conceptions but simply provides

corrective information for fixing superficial learner errors (Hattie & Gan, 2011). The new model

of feedback requires scrutinizing learners’ erroneous responses, to grasp their positions on the

trajectory towards the success of the learning goals, and provide corrective information targeted

at addressing student misconceptions (Hattie & Gan, 2011; Hattie & Timperley, 2007).

Data-driven Feedback for Conceptual Change

The evolutionary conceptual change theory offers a framework for understanding student

misconceptions and the development of ways to address student (mis)conceptions. The visibility

model provides a framework for designing feedback for addressing misconceptions and

promoting conceptual change. They both emphasize the importance of understanding current

states of learner knowledge and tracking the evolution of student (mis)conceptions using learner

data. This study adopted the evolutionary conceptual change theory and the visibility model of

feedback as the theoretical framework for understanding and addressing student misconceptions.

While previous studies in computer science education have discussed student misconceptions

from a variety of perspectives, little work has drawn on our understanding of evolutionary

conceptual change and appropriate use of data-driven feedback to promote conceptual change

(Qian & Lehman, 2017).

Instructional Approaches and Tools for Addressing Student Misconceptions

In computer science education, researchers and educators have developed various

instructional approaches to address students’ misconceptions in introductory programming (Qian

& Lehman, 2017). Using program examples in instruction is one effective approach. Previous

research has revealed that using worked-out examples in instruction can improve students’

performance in solving problems (Ginat, Shifroni, & Menashe, 2011). In addition, asking

students to comprehend and explain example programs can help to disclose students’

www.manaraa.com

8

misconceptions and develop their program composing and debugging skills (McCauley et al.,

2008; Teague & Lister, 2014; Vainio & Sajaniemi, 2007). Another approach is explicitly

teaching programming strategies to help students reduce cognitive load in programming and

improve their ability to decompose and solve problems (de Raadt, 2008; Muller, Ginat, &

Haberman, 2007). Some researchers advocate using another approach, a concept inventory

(Goldman et al., 2010; Taylor et al., 2014; Tew, 2010). A concept inventory is an assessment

aimed at evaluating students’ understanding of a group of concepts (Goldman et al., 2010; Tew,

2010). Using a concept inventory to evaluate students’ understanding of key programming

concepts enables instructors to identify common misconceptions students have and then improve

their instruction based on the misconceptions (Taylor et al., 2014). Another instructional

approach is Peer Instruction (Porter, Lee, & Simon, 2013), which focuses on engaging students

in active learning of new concepts. It includes three steps: answering a question individually,

having discussions with peers, and reconsidering the question again (Simon, Kohanfars, Lee,

Tamayo, & Cutts, 2010). Previous research on Peer Instruction indicated that it can effectively

improve students’ learning performance in introductory programming (Porter et al., 2013; Simon

et al., 2010).

In addition to instructional approaches, researchers and educators have also developed

instructional tools to address students’ misconceptions in introductory programming, such as

novice programming environments that help to prevent syntax errors (Kelleher & Pausch, 2005;

Resnick et al., 2009), debugging tools that improve students’ understanding of their errors

(Becker et al., 2016; Ko & Myers, 2005), and visualization tools that illustrate programming

concepts and program execution (Guo, 2013; Sorva, Karavirta, & Malmi, 2013). Of particular

interest for this study is the development of automated assessment systems that can automatically

assess students’ programs and provide immediate feedback to help students learn (De-La-Fuente-

Valentín, Pardo, & Delgado Kloos, 2013; Douce, Livingstone, & Orwell, 2005; Gerdes, Heeren,

Jeuring, & van Binsbergen, 2017). One way to provide feedback is to manually integrate

enhanced compiler error messages (Becker, 2016). Decaf is a tool that can provide novice-

friendly feedback messages by enhancing raw Java compiler error messages (Becker, 2016). In a

study of using Decaf to teach a Java-based CS1 class, Becker (2016) reported that the group

receiving feedback messages made 32% fewer errors than the group only seeing the raw Java

compiler error messages. Another way to provide feedback is designing algorithms to

www.manaraa.com

9

automatically diagnose students’ programs and personalize the feedback for students (Barnes &

Stamper, 2010; Rivers & Koedinger, 2017; Xu & Chee, 2003). However, such systems typically

only work on simple programming problems and provide feedback based on students’ errors in

code rather than misconceptions (Gerdes et al., 2017).

This study used Mulberry, an automated assessment system designed for Java learners, to

support learning. While many automated assessment systems have been developed and tested by

researchers, most systems to date either provide feedback based on compiler errors (e.g., Becker,

2016) or provide direct feedback for correcting simple errors in code (e.g., Gerdes et al., 2017).

This study focuses on analyzing both compilation and test errors in students’ programs to

understand student misconceptions and provide feedback targeted at promoting conceptual

change.

Purpose of the Study

The purpose of this exploratory design-based research study was to examine secondary

school students’ common misconceptions in introductory programming using both their

compilation and test errors and investigate how feedback affected the evolution of students’

(mis)conceptions using a data-driven approach. The following research questions guided the

study:

1. What are secondary school students’ common misconceptions in introductory programming?

2. How does feedback, developed to promote conceptual change, affect students’

(mis)conceptions?

Research Design

A two-stage, exploratory, design-based study was implemented. Research subjects in this

study were two groups of high school students enrolled in two sections of a Java-based

programming course as part of a 2017 summer residential program for gifted and talented

students. Students were identified as high ability according to the rules of the residential

program.

In the Java-based programming course, Mulberry, a programming learning system

designed for Java learners, was integrated into instruction. Mulberry has a pool of 51

programming problems, and students are required to write short programs to produce the correct

www.manaraa.com

10

output to solve the problems. Mulberry automatically assesses students’ solutions by comparing

the output of their programs with the expected output. When a student submits a program

producing the incorrect output, he or she receives immediate feedback from the system and can

try as many times as needed until his or her solution is correct. Mulberry collects all the

programs from students when they attempt to solve the problems.

For the first group, when students had errors in their solutions, they were told that errors

existed in their code and were encouraged to try again. After the first group’s course ended, data

analysis was conducted to identify common programming errors students demonstrated in their

programs and relevant misconceptions to answer RQ 1. Then, targeted feedback to address these

misconceptions was designed using principles from conceptual change and feedback theories

(diSessa, 2014; Hattie & Gan, 2011; Vosniadou & Skopeliti, 2014) and added to Mulberry.

When students of the second group solved problems in Mulberry and submitted solutions

producing incorrect output, they received the targeted feedback to address their misconceptions.

After the second group’s course ended, data analysis was conducted to assess how feedback

affected the evolution of students’ (mis)conceptions to answer RQ 2.

Organization of the Remaining Chapters

The remaining chapters of this dissertation are organized as follows. Chapter 2 provides a

review of the relevant literature that frames this study. The reviewed literature discusses three

major topics: misconceptions and conceptual change theories, feedback in education, and student

misconceptions in introductory programming. Chapter 3 provides a description of the research

methods, participants, and procedures. Chapter 4 presents the results of the study. Chapter 5

discusses the results, conclusions, and implications.

www.manaraa.com

11

CHAPTER 2: LITERATURE REVIEW

The goal of this study was to investigate student misconceptions in introductory

programming and the effects of targeted feedback for addressing misconceptions and promoting

conceptual change. This chapter first reviews relevant literature on misconceptions and feedback

in education to build the theoretical framework for this study. Second, studies about student

misconceptions in introductory programming are reviewed.

Misconceptions and Conceptual Change Theories

Student misconceptions have gained attention from researchers and educators in science

education since 1980s. A variety of conceptual change theories have been developed to explain

and address student misconceptions. This section reviews studies about misconceptions and

conceptual change theories.

Definitions of Misconceptions

In the research of student conceptions in science, the use of terminology is problematic

(Abimbola, 1988; Taber, 2013). Researchers often mistakenly assume that people understand the

same term in the same way (Taber, 2013). Hence, it is important to clearly define the terms of

the study in the first place. In science education, conceptions refer to students’ understandings of

academic concepts (Taber, 2013). Students’ development of conceptual understanding may vary

across individuals, because students may be taught the same academic concept (e.g., energy) in

different classes but would each build their own personal conceptions (e.g., of energy).

Misconceptions are problematic conceptions held by students which are inconsistent with

normative conceptions and often entrenched (Clement, 1993; Smith et al., 1994; Taber, 2013).

While a myriad of studies regarding student misconceptions in science have been conducted over

the past several decades, nowadays researchers are still using different terms to describe

students’ understandings of academic concepts that are at odds with scientific ones, such as

misconceptions, alternative conceptions, alternative frameworks, naïve knowledge, intuitive

knowledge, and others (Clement, 1993; diSessa, 2014; Klopfer, Champagne, & Gunstone, 1983;

Özdemir & Clark, 2007; Taber, 2014). Though some minor differences exist among these terms,

www.manaraa.com

12

generally they are considered as synonyms (Taber, 2014). This study uses the term

misconception as it is widely used by computing education researchers (Sorva, 2013).

Conceptual Change Theories

In science and mathematics education, researchers and educators have developed

conceptual change theories to address student misconceptions (Vosniadou & Skopeliti, 2014).

Conceptual change denotes the process through which learners’ existing (mis)conceptions

develop into intended normative conceptions (Duit & Treagust, 2003; Vosniadou & Skopeliti,

2014). Conceptual change theories inform the process of modifying student misconceptions to

help students establish normative understandings of the academic concepts to be learned

(Vosniadou & Skopeliti, 2014).

After decades of research, two conflicting theoretical perspectives, revolutionary

conceptual change and evolutionary conceptual change, have emerged (Abimbola, 1988;

Özdemir & Clark, 2007; Taber, 2013). The revolutionary conceptual change perspective (also

known as the knowledge-as-theory perspective) posits that learners’ existing naïve knowledge is

organized in a theory-like manner, and learners use their naïve theories to interpret and construct

new concepts (Özdemir & Clark, 2007; Posner et al., 1982). Thus, learners’ existing

misconceptions are a potential barrier to new learning, and conceptual change is a revolutionary

process that replaces learners’ naïve theory-like knowledge structures with intended scientific

conceptions. According to the revolutionary conceptual change perspective, successful

instruction needs to help students confront their misconceptions, present the academic concept to

students in a way that produces cognitive conflicts, and then help students abandon their

misconceptions and adopt the new conceptions (Abimbola, 1988; Posner et al., 1982). Thus, the

new conception needs to be intelligible, plausible, and fruitful (Posner et al., 1982). In other

words, the new conception should be easy to understand, offer more explanatory power than the

old conception, and demonstrate “the potential to be extended, to open up new areas of inquiry”

(Posner et al., 1982, p. 214).

In contrast, the evolutionary conceptual change perspective (also known as knowledge-

as-elements perspective) postulates that learners’ prior naïve knowledge consists of relatively

unstructured collections of quasi-independent elements (Abimbola, 1988; diSessa, 1993). From

this viewpoint, conceptual change is an evolutionary process of correcting and enhancing

www.manaraa.com

13

existing knowledge elements and establishing and refining the relationships among conceptions.

These naïve knowledge elements of students are called phenomenological primitives (p-prims)

by diSessa (1993, 2014). P-prims are rooted in students’ superficial interpretations of their daily

experience. Students often use p-prims to interpret scientific phenomena and also their life

experience. The key feature of p-prims is their primitiveness that enables the naïve knowledge

elements to be self-explanatory. Unlike the revolutionary conceptual change perspective,

researchers of evolutionary conceptual change believe that learners’ existing (mis)conceptions

should be considered as productive resources for constructing new concepts, and the purpose of

instruction is to reconcile students’ prior (mis)conceptions with new learning, rather than

replacing them (Abimbola, 1988; diSessa, 2013, 2014). Although the composition of students’

naïve knowledge elements can be productive when constructing new knowledge, few studies

have investigated the productive aspects of students’ prior knowledge (diSessa, 2014).

Furthermore, according to the evolutionary conceptual change perspective, student

misconceptions are contextually sensitive (diSessa, 2013; Özdemir & Clark, 2007). In different

learning contexts, different knowledge elements of students may be activated and used in the

knowledge construction process. When the learning contexts are similar, students may also form

a variety of intermediate (mis)conceptions during conceptual change.

While debate between the two perspectives is ongoing (see diSessa, 2013 and Vosniadou,

2013), the current trend in conceptual change research has shown convergence (Vosniadou &

Skopeliti, 2014). Vosniadou and Skopeliti (2014) proposed the framework theory approach,

which tried to resolve the conflicts between the two perspectives. On the one hand, this approach

agrees that conceptual change is an evolutionary process, naïve knowledge elements exist in

students’ prior knowledge, and student misconceptions are not independent of learning contexts.

On the other hand, it argues that students tend to use coherent framework theories, which are

generated from their naïve knowledge, to interpret phenomena. The framework theory approach

posits that before students successfully understand the new academic concept, the interaction

between the new concept and their existing framework theories results in various synthetic

models, which are intermediate states of knowledge with partially correct interpretation

(Vosniadou, 1994; Vosniadou & Skopeliti, 2014).

Nowadays, researchers of conceptual change theories share the ideas that (a) learners’

own pre-instructional conceptions (also called naïve knowledge) are based on their daily

www.manaraa.com

14

experience; (b) learners’ existing knowledge has an impact on the acquisition of new knowledge;

and (c) student misconceptions are often entrenched and conceptual change is time consuming

(Özdemir & Clark, 2007; Taber, 2013). Researchers agree that evolutionary conceptual change is

a prerequisite of revolutionary conceptual change (Taber, 2013; Vosniadou & Skopeliti, 2014),

and success in conceptual change requires tracking the development of learners’

(mis)conceptions using real-time data of learning (diSessa, 2014; Vosniadou, 2013). With

precise understanding of the nature and current status of student (mis)conceptions, instructors

can choose proper strategies for accomplishing conceptual change, such as “directly challenging

student conceptions,” “ignoring them and simply teaching the canonical ideas,” or “seeing

learners’ conceptions as useful (or necessary) starting points that need to be modified over time

through a multistage conceptual trajectory” (Taber, 2014, p. 40).

Summary

Conceptual change theories stem from studies in the fields of science and mathematics

education. However, they may also be valuable to studies in computer science education as they

provide frameworks for understanding the formation and evolution of student misconceptions

and offer instructional strategies for addressing student misconceptions. According to conceptual

change theories, the modification of student misconceptions is an evolutionary process. Careful

analysis of students’ existing conceptions and considering learners’ naïve knowledge as a

productive resource for knowledge construction is vital to promote conceptual change (diSessa,

2014; Vosniadou & Skopeliti, 2014). The key to address student misconceptions is describing

the knowledge acquisition process and tracking the evolution of learners’ understandings using

learner data (diSessa, 2013, 2014; Vosniadou, 2013). While conceptual change theories have

been widely adopted to understand the development of student knowledge in math and science

(Vosniadou & Skopeliti, 2014), they have received relatively little attention in CS education to

date (Qian & Lehman, 2017; Sorva, 2012).

Feedback in Education

There is no doubt that feedback is important in education. However, researchers often

define feedback differently and have not reached an agreement on its impact on learning. Studies

about timing, complexity, and sources of feedback often report inconsistent results. This section

www.manaraa.com

15

reviews studies on the definitions of feedback in education, the effects of feedback, and the

models for designing effective feedback.

Definitions of Feedback

Feedback is essential to help learners successfully construct new knowledge. Historically,

researchers have defined feedback from three different perspectives: feedback as motivator,

feedback as reinforcement, and feedback as information (Kulhavy & Wager, 1993). According to

the motivational viewpoint, feedback is a motivator or incentive for enhancing learning

performance. However, the mix of motivation and feedback makes it difficult to conceptualize

how feedback works (Kulhavy & Wager, 1993). The feedback-as-reinforcement perspective

posits that feedback producing a satisfying effect is likely to make the response repeated in the

future. This idea was derived from E. L. Thorndike’s Law of Effect and greatly developed by B.

F. Skinners’ study of programmed instruction (Kulhavy & Wager, 1993; Mory, 2004). These

researchers believed that telling the learner his or her answer is correct would increase the

probability of the learners making the same right response in the future. Hence, studies of the

feedback-as-reinforcement perspective mainly focused on learners’ correct responses and often

ignored errors (Kulhavy, 1977).

Instead of concentrating on correct responses, the feedback-as-information perspective

emphasizes learners’ erroneous responses and considers feedback as information for correcting

learners’ errors and misunderstandings (Butler & Winne, 1995; Hattie & Timperley, 2007;

Kulhavy & Wager, 1993; Shute, 2008). Butler and Winne (1995) proposed that feedback is

“information with which a learner can confirm, add to, overwrite, tune, or restructure

information in memory, whether that information is domain knowledge, metacognitive

knowledge, beliefs about self and tasks, or cognitive tactics and strategies” (p. 275). Hattie and

Timperley (2007) defined feedback as information provided by an agent aiming to reduce the

gap between the learner’s current and intended understanding. According to Shute (2008),

feedback is “information communicated to the learner that is intended to modify his or her

thinking or behavior for the purpose of improving learning” (p. 154). While researchers

nowadays do not deny that feedback in education may lead to changes in learners’ motivation

and reinforcement of learning, they agree that feedback in essence is information for facilitating

learning (Hattie & Gan, 2011; Hattie & Timperley, 2007; Shute, 2008). More specifically,

www.manaraa.com

16

feedback is information provided by an agent to change learners’ thinking or behavior for the

purpose of enhancing learning (Hattie & Timperley, 2007; Shute, 2008).

Effects of Feedback

While feedback is treated differently by different researchers, overall it is powerful in

learning and teaching within various learning contexts (Hattie & Timperley, 2007; Kulhavy &

Wager, 1993; Van der Kleij et al., 2015). However, previous studies have not reached an

agreement on the effects of feedback (Kluger & DeNisi, 1996; Shute, 2008; Van der Kleij et al.,

2015). Three major variables influencing the effects of feedback have been discussed by

researchers: timing (immediate vs. delayed), complexity (simple vs. complex), and source

(external vs. internal).

Timing of Feedback

Even though the timing of feedback has been widely studied, conflicting results exist in

previous research (Kulik & Kulik, 1988; Shute, 2008; Van der Kleij et al., 2015). Results of

some studies have favored immediate feedback, which refers to feedback provided immediately

after the learner’s response. In an early meta-analysis of findings on feedback timing, Kulik and

Kulik (1988) concluded that immediate feedback was more effective than delayed feedback in

actual classroom settings. According to the meta-analysis on effects of feedback in computer-

based instruction conducted by Azevedo and Bernard (1995), studies using immediate posttests

showed a mean weighted effect size of 0.80, while a mean effect size was estimated at 0.35 for

studies involving delayed posttests. By studying students who learned Lisp programming using

the ACT Programming Tutor, Corbett and Anderson (2001) noted that immediate feedback

increased the learning rate while producing the equivalent performance. In their study, three

versions of feedback were offered to students: immediate feedback with automatic error

correction, immediate feedback with learner-controlled error correction, and delayed feedback on

learners’ demand with learner-controlled error correction. Students in the first group received

immediate feedback when they made a mistake, and the tutor automatically corrected the errors

for them. The second group students also got immediate feedback on bugs but had to fix errors

by themselves. The third group students only saw feedback when they requested. Though the

www.manaraa.com

17

three groups performed equivalently on the tests, the results indicated that immediate-feedback

groups learned the content faster than the demand-feedback group (Corbett & Anderson, 2001).

Delayed feedback means that an interval exists between response and feedback. The

interval can be minutes, hours, days, or longer in different studies (Shute, 2008). Previous studies

(Butler, Karpicke, & Roediger, 2007; Kulik & Kulik, 1988) reported the superiority of delayed

feedback in testing situations. In an experiment investigating the feedback effects of different

degrees of delay from 0 s to 30 s, Schroth (1992) found that delayed feedback was beneficial to

learning transfer while it decreased the rate of initial learning. Kulhavy (1977) pointed out that

with delayed feedback learners showed better performance in retention tests because of the

delay-retention effect (Kulhavy & Anderson, 1972). The delay-retention effect posits that

corrective information will be more effective when it is delayed because learners may forget the

initial errors during the interval. On the contrary, another study about feedback timing and

retention indicated that delayed feedback led to greater retention of initial lesson responses than

immediate feedback, whether the initial responses were right or wrong (Clariana et al., 2000).

Overall, it seems that delayed feedback is superior to immediate feedback in some

circumstances.

In addition to the conflicting reports of effectiveness of immediate and delayed feedback,

some other studies also reported that the timing of feedback showed no significant effects on

learning (Jaehnig & Miller, 2007; Mory, 2004). However, it is not wise to discuss the effects of

feedback simply considering its timing. First, even though immediate feedback is easy to define,

the meaning of delayed feedback is often ambiguous (Van der Kleij et al., 2015). Does a one-

minute delay have the same effects as a one-hour delay? It is difficult to answer. Furthermore,

with different intended learning outcomes, immediate and delayed feedback may show different

effects (Shute, 2008). Immediate feedback seems to be more beneficial to lower order learning

outcomes while delayed feedback appears to be more effective on higher order learning

outcomes (Van der Kleij et al., 2015). Therefore, without discussing the content of feedback and

the learning contexts, directly comparing the effects of immediate and delayed feedback

probably is meaningless.

www.manaraa.com

18

Complexity of Feedback

Another commonly researched variable that may contribute to the effects of feedback is

complexity (Mory, 2004; Shute, 2008; Van der Kleij et al., 2015). When discussing the

complexity of feedback, two similar categorizations are often applied. The first one categorizes

feedback as outcome feedback and cognitive feedback (Balzer, Doherty, & O’Connor, 1989;

Butler & Winne, 1995). Outcome feedback, sometimes also called “knowledge of results,”

provides verification information of the correctness of a learner response. Rather than merely

telling a learner whether his or her response is correct or incorrect, cognitive feedback conveys

additional information for improving the response. The complexity of cognitive feedback may

vary depending on how much extra information it includes.

Another categorization contains three types of feedback: knowledge of results (KR),

knowledge of correct response (KCR), and elaborated feedback (EF) (Dempsey, Driscoll, &

Swindell, 1993; Van der Kleij et al., 2015). KR is same as the outcome feedback in the former

categorization and tells the learner whether his or her answer is right or wrong. KCR provides

the correct answer for learners. EF contains additional corrective information such as hints and

extra learning material in order to guide the learner towards the right response. Though different

terms are used, the two categorizations are similar to each other. Outcome feedback is the same

as KR. As KCR and EF provide corrective information rather than only verification information,

they both can be considered as cognitive feedback. Hence, it is possible to combine the two

categorizations.

According to Kulhavy and Stock (1989), effective feedback usually consists of two

essential and separable components: verification and elaboration. Therefore, we can merge the

two categorizations in this way: if the feedback only offers verification, it is outcome feedback or

KR; if the feedback contains additional corrective information, such as the correct answer,

clarification of the correct answer, explanation of the errors, guidance for revision, and so forth,

which are aimed at correcting the learner’s misunderstanding, it is cognitive feedback or

elaborated feedback. Thus, KCR, simply providing the correct answer, can be considered as a

special version of elaborated feedback.

Obviously, cognitive feedback is more complex than outcome feedback. Does the

complexity of feedback matter? Previous research has shown inconsistent results (Mory, 2004).

In a study using five modes of feedback: no feedback, outcome feedback, KCR, cognitive

www.manaraa.com

19

feedback, and the combination of outcome feedback and cognitive feedback, Gilman (1969)

reported that in general cognitive feedback was more effective than outcome feedback, and the

combination group showed better immediate retention. On the contrary, Wentling (1973)

compared using outcome feedback and KCR for male high school students in the course General

Automobile Mechanics and found that outcome feedback resulted in better immediate

achievement in unit tests. In the dissertation of Lee (1985), no significant differences were found

between using outcome and cognitive feedback.

Specifically, regarding cognitive feedback, various studies have been conducted to

compare the effectiveness of different types of elaborative information (Jaehnig & Miller, 2007;

Sleeman, Kelly, Martinak, Ward, & Moore, 1989; Van der Kleij et al., 2015). For instance, in a

study of high school algebra learners, Sleeman et al. (1989) applied two different approaches of

providing feedback: model-based remediation (MBR) and reteaching. MBR offers “procedurally

orientated remediation of specific errors found in a student’s solutions before reteaching a

correct strategy” (Sleeman et al., 1989, p. 552). Reteaching refers to simply teaching the correct

method again without addressing learners’ errors. While both approaches were more effective

than no feedback, Sleeman et al. (1989) noted that MBR was not superior to reteaching.

By systematically reviewing different types of feedback in programmed instruction,

Jaehnig and Miller (2007) indicated that though more time is required for instructional design

and learning, elaborated feedback is more effective than simply providing the correct response

(KCR). According to a meta-analysis of feedback effects in computer-based learning

environments (Van der Kleij et al., 2015), cognitive feedback with an explanation or other

additional information for modifying learners’ misunderstanding (effect size 0.49) is more

effective than cognitive feedback merely providing the correct answer (effect size 0.32) and both

types of cognitive feedback are better than outcome feedback (effect size 0.05). Van der Kleij et

al. (2015) also argued that elaborated cognitive feedback was more effective for higher order

learning outcomes than KCR and outcome feedback.

While many studies have discussed the effects of feedback of different complexities,

researchers have not reached a consensus. Apparently, simply comparing the effectiveness of

outcome feedback and cognitive feedback without considering learner characteristics and

learning contexts is not sensible. Fifth graders who learn English vocabulary and college students

who learn Java programming probably need feedback of distinct complexities. Furthermore,

www.manaraa.com

20

cognitive feedback is difficult to define as the elaboration can be varied in different studies. As a

common type of cognitive feedback, providing the correct response (KCR) seems to be

consistently defined by different studies. However, offering the correct answer to a multiple-

choice question (e.g., Kulhavy & Stock, 1989) compared to a programming problem (e.g.,

Corbett & Anderson, 2001) may lead to different learning outcomes. How cognitive feedback

works really depends on how much information it contains and how the information is presented.

Thus, it is crucial to discuss and compare the influence of feedback’s complexity within a

specific design and setting. However, researchers have reached agreement that providing

feedback is better than no feedback for enhancing learning, and generally cognitive feedback

seems superior to outcome feedback (Balzer et al., 1989; Butler & Winne, 1995; Hattie &

Timperley, 2007; Van der Kleij et al., 2015).

Source of Feedback

Feedback can also be categorized as external and internal according to its sources.

Traditionally, researchers have focused on feedback offered to students by an external source,

such as a human or a computer (Bangert-Drowns et al., 1991; Corbett & Anderson, 2001; Van

der Kleij et al., 2015). External feedback from teachers on tests or in a classroom setting is

frequently discussed by researchers (Hattie & Timperley, 2007; Kulhavy & Stock, 1989) because

teachers are usually the primary source of feedback. However, a new strand of research on

feedback of peers has emerged (Lu & Law, 2012). As the popularity of formative assessment has

grown rapidly, peer assessment has been considered as a potential way to effectively provide

formative assessment (Gielen, Peeters, Dochy, Onghena, & Struyven, 2010; Sadler, 1989). Peer

assessment, which refers to evaluating peers’ work and giving constructive feedback, consists of

two components: peer grading and peer feedback (Lu & Law, 2012). Peer grading is the process

in which assessors assign grades to peers’ work by applying criteria and standards; peer feedback

refers to providing constructive comments on peers’ work. We may consider peer grading as

outcome feedback from peers and peer feedback as cognitive feedback from peers. Though it is

regarded as a reliable approach, peer grading alone is less effective than peer grading plus peer

feedback (Liu & Carless, 2006; Lu & Law, 2012). In addition, peer feedback benefits both

assessors and assessees (Gielen et al., 2010; Lu & Law, 2012). However, providing peer

feedback seems to be more beneficial for enhancing understandings and improving learning than

www.manaraa.com

21

simply receiving peer feedback (Li, Liu, & Steckelberg, 2010; Patchan & Schunn, 2015).

Perhaps, this is because that students do not always take actions on implementing feedback

(Nelson & Schunn, 2009), or they prefer adopting teacher feedback to accepting peer feedback

(Yang, Badger, & Yu, 2006).

In addition to humans, with the development of technology, computers have become

another important source of feedback for learners. Since the 1960s, researchers have strived to

build computer-based systems that can automatically provide effective feedback for learners

(Anderson, Boyle, & Reiser, 1985; Smith & Sherwood, 1976; Ulloa, 1980). In these systems,

students “receive essentially instantaneous reinforcement of correct work and assistance where

they are having difficulty” (Smith & Sherwood, 1976, p. 334). There are two major types of this

kind of learning system. The first type is usually called Computer Aided Instruction (CAI) or

Computer-Based Instruction (CBI) and offers immediate feedback to learners based on their

answers (VanLehn, 2011). The second type is often called Intelligent Tutoring System (ITS) and

is “characterized by giving students an electronic form, natural language dialogue, simulated

instrument panel, or other user interface that allows them to enter the steps required for solving

the problem” (VanLehn, 2011, p. 198). The major difference between them is that CAI usually

provides feedback such as a hint or a congratulatory message for the learner without scrutinizing

the details of the response and the process of constructing the response, while an ITS typically

offers concrete step-based feedback either during the problem-solving process or after the

solution is submitted with specific supportive information based on the learner’s errors and

(mis)understandings.

Although some studies found that feedback offered by humans sometimes is more

flexible and effective than that from a machine (Merrill, Reiser, Ranney, & Trafton, 1992;

VanLehn et al., 2007), there are also researchers indicating that computer-provided feedback is

as effective as human-provided feedback (VanLehn, 2011) and sometimes even leads to better

learning rates and performance (Anderson et al., 1985). By comparing human tutors and ITSs,

Merrill et al. (1992) noted that the effectiveness was similar when the computer systems could

provide as much assistance as necessary like human tutors. As digital learning systems nowadays

can capture a tremendous amount of learner data, applying data-driven techniques to give

automated feedback to learners has become more feasible (Gerdes et al., 2017; Rivers &

Koedinger, 2017). By analyzing errors a specific learner makes, data-driven learning systems are

www.manaraa.com

22

able to offer customized feedback to the learner in order to help him or her correct errors and

change misconceptions.

In contrast to external feedback, internal feedback is generated by the learner and is

crucial to self-regulation that “guides cognitive activities during which knowledge is accreted,

tuned, and restructured” (Butler & Winne, 1995, p. 246). Hence, as an essential component of

self-regulated learning, learners use internal feedback to set learning goals, monitor their

progress, judge their performance relative to the goals, and act to reduce the discrepancies

between goals and outcomes (Nicol & Macfarlane-Dick, 2006). Sadler (1989) argued that it is

important to develop learners’ ability to assess their own work, appreciate high quality work, and

generate internal feedback for closing the gap. As it is ubiquitous during the learning process,

internal feedback is vital to the effectiveness of external feedback. A learner may generate

internal feedback when he or she is working on a task or after receiving external feedback about

his or her response. When external feedback such as outcome feedback provides minimal

information about how to self-regulate, it may not lead to effective internal feedback and

improved performance (Butler & Winne, 1995; Moos, 2011). Cognitive feedback, in contrast to

outcome feedback, usually gives learners information that guides cognitive activities for locating

and fixing the errors. However, no matter whether it is outcome or cognitive feedback, “students

filter information provided by external feedback through knowledge and beliefs, applying

conditional knowledge to identify cues” (Butler & Winne, 1995, p. 264). Hence, the

effectiveness of the external feedback actually depends on the learner’s interpretation of the

information based on their prior knowledge and beliefs, rather than the information itself.

In general, internal and external feedback work together to improve learning performance

and close the gap between the current and intended understandings (Merrill et al., 1992). In terms

of feedback, learners should be considered as “having a proactive rather than a reactive role in

generating and using feedback” (Nicol & Macfarlane‐Dick, 2006, p. 199). Therefore, when we

design and provide feedback for learners, it is important to deliberate how external feedback will

influence internal feedback and guide self-regulation.

Models of Feedback

As a number of factors may influence the effect of feedback on learning, including

timing, complexity, and sources of feedback (Hattie & Timperley, 2007; Kulhavy & Wager,

www.manaraa.com

23

1993; Van der Kleij et al., 2015), researchers have developed different models of feedback to

explain how feedback facilitates learning and provide guidelines for designing effective

feedback. Well-known models of feedback include the certitude model with a focus on learner

response confidence (Kulhavy & Stock, 1989), the five-stage model emphasizing learners’

mindful reflection (Bangert-Drowns et al., 1991), and the connectionist model concentrating on

the retention of initial lesson responses (Clariana et al., 2000). Each of these models mainly

addresses one factor that may contribute to feedback’s effects, such as confidence (Kulhavy &

Stock, 1989), self-regulation (Bangert-Drowns et al., 1991; Butler & Winne, 1995), and timing

(Clariana et al., 2000).

Recently, a more inclusive model, the visibility model of feedback, with an emphasis on

visualizing learners’ current knowledge states, has been developed and become widely accepted

(Hattie & Gan, 2011; Hattie & Timperley, 2007). Hattie and Timperley (2007) indicated that the

previous commonly debated issues about feedback such as timing and complexity were mainly

due to the lack of recognition of the various feedback levels. According to the visibility model,

feedback is information for reducing “the discrepancy between what is understood and what is

aimed to be understood” and is the most powerful when it makes learning visible to both the

teacher and the learner (Hattie & Gan, 2011, p. 257-258). Visibility means that effective feedback

needs to answer three major questions: “Where am I going?,” “How am I going?,” and “Where

to next?” (Hattie & Timperley, 2007). In other words, procedures for designing effective

feedback include (1) clearly describing the desired learning outcomes, (2) precisely analyzing

learners’ current knowledge states, and (3) identifying the discrepancy between the current states

and the intended outcomes and providing information for reducing the discrepancy and

enhancing learning (Hattie & Gan, 2011; Hattie & Timperley, 2007).

Feedback answering the three questions works at four different levels: task level, process

level, self-regulation level, and self-level (Hattie & Gan, 2011; Hattie & Timperley, 2007). The

task-level feedback provides information about the task or product, such as the learner’s

performance on the task and additional task-related information (e.g., “Your answer is almost

correct, but X in the problem is 3 not 5.”). It is commonly used in the classroom and usually is

not generalizable to other tasks (Hattie & Gan, 2011). While providing task-related information

typically is only effective for building surface knowledge, the acquisition of correct task-related

www.manaraa.com

24

information is “a pedestal on which the processing and self-regulation is effectively built”

(Hattie & Timperley, 2007, p. 91).

Feedback aiming at the process level provides “task processing strategies and cues for

information search” (Hattie & Gan, 2011, p. 260). For instance, a computer science teacher may

tell a student, “Your program is working, but you did not use the correct variable types.” The

teacher’s feedback offers cues for debugging the program to the student. Thus, feedback at

process level is important for learners to detect errors and develop correct understandings.

Though process-level feedback is powerful for enhancing deeper learning, it often interacts with

task-level feedback as task information is vital to process the task (Hattie & Gan, 2011).

Feedback at the self-regulation level aims at directing learners’ self-evaluation, boosting

learners’ self-efficacy, increasing learners’ effort in task engagement, and improving other self-

regulated activities (e.g., “Your program is correct, but how can you revise it to improve its

performance?”). It mainly tries to help learners develop skills of monitoring the learning process,

evaluating the information provided, and reflecting on the learning outcomes (Hattie & Gan,

2011).

Self-level feedback is directed to the “self” without providing information about how to

enhance the task performance or improve the product (e.g., “Well done”, “Good job”). As little

task-related information is contained in such praise, only using praise often has little impact on

achievement (Hattie & Timperley, 2007; Kluger & DeNisi, 1996).

In summary, the core of the visibility model of feedback is to visualize the discrepancy

between learners’ current understanding and the desired understanding. Hence, to design

effective feedback, it is essential to clearly describe the learning goals and precisely understand

the learner’s current progress, and then present information for closing the gap. Furthermore, the

discrepancy should be visible for both teachers and learners (Hattie & Gan, 2011). For teachers,

they need to know what challenges and difficulties students face so that they can provide

appropriate feedback. For learners, they need to know what errors they have made and what the

desired outcome is so that they may receive the feedback effectively and take actions to change

their (mis)understandings and improve their responses. Finally, the visibility model proposes

four levels of feedback and emphasizes that effective feedback needs to be designed and

provided at the appropriate operational level(s) (Hattie & Gan, 2011). Hence, for different

www.manaraa.com

25

learners (e.g., novices, experts) and different learning settings, feedback needs to include

different levels of information (task, process, self-regulation, self, or combined).

Summary

Although historically researchers treated educational feedback as motivator or

reinforcement of learning, nowadays they agree that feedback is information for facilitating

learning (Hattie & Gan, 2011; Hattie & Timperley, 2007; Shute, 2008). Admittedly, feedback

may lead to an increase in motivation or reinforcement of learning as consequences. In essence,

it is information provided by an agent to change learners’ thinking or behavior for the purpose of

enhancing learning (Hattie & Timperley, 2007; Shute, 2008). A variety of factors such as timing,

complexity, and sources may influence the effects of feedback within different learning contexts

(Hattie & Timperley, 2007; Kulhavy & Wager, 1993; Van der Kleij et al., 2015). According to

the visibility model, the problem of traditional feedback design is that it neglects to examine

learners’ current (mis)conceptions but simply provides corrective information for fixing

superficial learner errors (Hattie & Gan, 2011). The new model of feedback requires scrutinizing

learners’ erroneous responses, to grasp their positions on the trajectory towards the success of the

learning goals, and provide corrective information targeted at addressing student misconceptions

(Hattie & Gan, 2011; Hattie & Timperley, 2007).

Student Misconceptions in Introductory Programming

In the learning of programming, student misconceptions are students’ deficient or

erroneous understandings of programming concepts (Qian & Lehman, 2017; Sorva, 2013; Taber,

2013). In previous literature, a variety of terms have been used to describe students’ inaccurate

understandings in learning to program, such as “misconceptions” (Sorva, 2013), “difficulties”

(du Boulay, 1986), “errors” (Sleeman et al., 1986), “bugs” (Pea, 1986), “mistakes” (Altadmri &

Brown, 2015), and so forth. With these different terms, researchers have discussed students’

syntax errors in the code, misunderstandings of programming concepts, difficulties in writing

and debugging programs, and so on (Sorva, 2013). While various student misunderstandings and

errors are often lumped together as “misconceptions,” qualitative differences exist between a

simple syntax error in a loop statement, conceptual misunderstandings of loops, and challenges

of using loop constructs to solve problems. However, these difficulties are related to each other,

www.manaraa.com

26

and problems of students’ conceptual understandings are the pivot that may lead to syntactic

errors, logic errors, and other difficulties (Bayman & Mayer, 1988; de Raadt, 2008; Ebrahimi

1994; Lopez et al., 2008; Qian & Lehman, 2017). In this section, studies about student

misconceptions and related difficulties in introductory programming are reviewed and organized

by two themes including understanding and addressing student misconceptions.

Understanding Student Misconceptions

Introductory CS courses are difficult for beginners (Guzdial, 2015; McCracken et al.,

2001), and students often exhibit misconceptions that impede their learning of introductory

programming (Altadmri & Brown, 2015; Sorva, 2013). Qian and Lehman (2017) summarized

literature regarding common misconceptions and other difficulties in introductory programming.

For instance, variables are a very basic concept in most of the programming languages, but

novices may mistakenly believe that the computer understands variables by the English

meanings of their names, even though variable names are arbitrary (Kaczmarczyk et al., 2010;

Sleeman et al., 1986). Sequential execution of code is another challenging concept for beginners

(du Boulay, 1986; Simon, 2011). For instance, students may mistakenly believe that when the

Boolean expression of a conditional statement becomes true, even if this occurs twenty lines

below the conditional statement, the program will go back and execute the code in that

conditional block (Pea, 1986). High-level concepts such as classes, objects, instances, and their

relationships in object-oriented programming (OOP) also often confuse students (Guzdial, 1995;

Holland et al., 1997; Ragonis & Ben-Ari, 2005; Sorva, 2013). Ragonis and Ben-Ari (2005)

conducted a two-year long study and identified 58 conceptions and difficulties students

encountered in a high school introductory Java programming course.

Students in introductory programming courses may also exhibit syntax errors when

writing programs to solve problems. Researchers have cataloged common syntax errors of

students in introductory programming (Altadmri & Brown, 2015; Hristova, Misra, Rutter, &

Mercuri, 2003; Jackson et al., 2005; Sirkia & Sorva, 2012). After analyzing students’

compilation errors in a freshman Java course, Jackson et al. (2005) reported that the top three

errors students made were forgetting variable declaration, missing semicolons, and using illegal

start of expressions. In Java programming, a variable has to be declared before being used, but

students often forget to declare variables. A semicolon is a required punctuation mark to end a

www.manaraa.com

27

statement in Java, but beginners often forget to add it. The third error, using illegal start of

expression, usually results from incorrect construction of Java expressions, such as using wrong

punctuation marks in expressions. By analyzing millions of errors of students who learned Java

programming using the BlueJ IDE, Altadmri and Brown (2015) provided a list of 18 common

mistakes in Java programming and noted that mismatching parentheses, brackets, or quotation

marks is the most common syntactic error. Another common novice mistake is incorrectly using

the assignment operator (=) instead of the comparison operator (==) (e.g., if (a = b)) (Hristova

et al., 2003; Sirkia & Sorva, 2012).

In addition, beginners usually lack well-established programming strategies (Clancy &

Linn, 1999; Davies, 1993; Lister et al., 2006; Sajaniemi & Prieto, 2005; Soloway 1986) and then

face difficulties with planning, composing, and debugging programs. Strategic problems include

failing to understand and decompose the task (Muller, 2005; Robins et al., 2006), forgetting to

test boundary conditions and unexpected cases (Fisler et al. 2016; Sajaniemi & Kuittinen, 2005;

Spohrer & Soloway, 1986), and inappropriately tracing their code and locating errors (Ben-

David Kolikant & Mussai, 2008; Fitzgerald et al., 2008; McCauley et al., 2008).

Qian and Lehman (2017) described factors that may contribute to students’

misconceptions in learning to program. Major factors that contribute to students’ misconceptions

include interference caused by prior knowledge (Clancy, 2004; Miller, 2014) and flawed mental

models of computer operation (Guzdial, 2015; Sorva, 2013). Novice students may mistakenly

use concepts they learned in math to try to understand programming concepts (e.g., variables),

which look similar but mean something quite different (Clancy, 2004; Qian & Lehman, 2017).

As most programming languages are natural-language-based, students’ existing knowledge of

natural language may hinder their construction of the meanings of programming concepts

(Bruckman & Edwards, 1999; du Boulay, 1986; Miller 2014). In addition, unlike experts,

beginners’ conceptual knowledge is often fragmentary and not organized into meaningful

patterns (Clancy & Linn, 1999; Lister, 2011; McCauley et al., 2008; Sajaniemi & Prieto, 2005;

Whalley et al., 2006). Thus, they may only be able to understand programs in a line-by-line

manner and then fail to holistically evaluate and properly debug a program (Ben-David Kolikant

& Mussai, 2008; Lister et al., 2006). Students in introductory programming courses also often

hold flawed mental models of the notional machine, which refers to an abstract computer that

executes code in the programmer’s mind (du Boulay, 1986; Guzdial, 2015; Sorva, 2013).

www.manaraa.com

28

Without correct understanding of the notional machine, a student may fail to understand the

sequential execution of statements (du Boulay, 1986; Simon, 2011).

Addressing Student Misconceptions

In computer science education, researchers and educators have developed various

instructional approaches and tools to address students’ misconceptions in introductory

programming.

Instructional Approaches

 Using program examples in instruction is one effective approach to address students’

understanding. Previous research revealed that using worked-out examples in instruction can

improve students’ performance in solving problems (Ginat et al., 2011). Asking students to

comprehend and explain example programs can help to disclose students’ misconceptions and

develop their program composing and debugging skills (McCauley et al., 2008; Teague & Lister,

2014; Vainio & Sajaniemi, 2007). Another approach is explicitly teaching programming

strategies in introductory programming. de Raadt (2008) reported that after students received

explicit instruction in programming strategies, they showed improvements in overall

programming performance and better ability to apply programming strategies to solve problems.

Muller et al. (2007) found that pattern-oriented instruction (POI) can help to reduce students’

cognitive load in programming and improve their ability to decompose problems and construct

solutions.

Other approaches include using a concept inventory (CI) (Goldman et al., 2010; Taylor et

al., 2014; Tew, 2010) and Peer Instruction (PI) (Porter et al., 2013). A concept inventory is an

assessment that aims to evaluate students’ understanding of a group of concepts (Goldman et al.,

2010; Tew, 2010). Using a concept inventory to evaluate students’ understanding of key

programming concepts enables instructors to identify common misconceptions students have and

then improve their instruction based on the misconceptions (Taylor et al., 2014). Another

instructional approach is Peer Instruction, which focuses on engaging students in active learning

of new concepts. It includes three steps: answering a question individually, having discussions

with peers, and reconsidering the question again (Simon et al., 2010). Previous research on Peer

www.manaraa.com

29

Instruction indicated that Peer Instruction can effectively improve students’ learning

performance in introductory programming (Porter et al., 2013; Simon et al., 2010).

Instructional Tools

In computer science education, many programming environments and tools have been

developed to address students’ misconceptions in introductory programming. Three major types

of the instructional tools are novice programming environments, code visualization tools, and

automated assessment systems.

Novice Programming Environments

Block-based programming environments such as Scratch (Resnick et al., 2009) and Alice

(Dann, Cosgrove, Slater, Culyba, & Cooper, 2012) can prevent syntax errors and help novices

develop a better understanding of programming concepts (Price & Barnes, 2015; Weintrop &

Wilensky, 2015). Natural-language-like programming languages have also been developed to

reduce learners’ programming errors and enhance learning performance (Bruckman & Edwards,

1999). By embedding Whyline, a special designed debugging interface for novice programmers,

Ko and Myers (2005) reported significant improvements in students’ debugging skills.

Code Visualization Tools

Code visualization tools are tools that can illustrate the process of code execution and

variable states (Sorva et al., 2013). One well-known code visualization tool is Python Tutor

(Guo, 2013), which was originally designed for visualizing the execution of Python code step by

step and now supports other programming languages such as Java, JavaScript, TypeScript, and

so forth. Another example is Greenfoot, which focuses on visualizing OOP concepts to help

students better understand Java classes and objects and the execution flow of Java programs

(Kölling, 2010). As beginners often hold problematic mental models of the notional machine,

Sorva (2012) developed UUhistle that focuses on the visualization of the notional machine for

Python programming. Because one important source of student misconceptions in introductory

programming is their misunderstandings of code execution and problematic mental models of the

computer system, code visualization tools have been helpful to support addressing certain

student misconceptions (Sirkia & Sorva, 2012; Sorva et al., 2013). On the other hand, instructors

www.manaraa.com

30

should not assume code visualization tools can benefit all students in all teaching contexts,

because these tools may also increase students’ cognitive load during learning (Guzdial, 2015;

Sorva, 2012; Sorva et al., 2013).

Automated Assessment Systems

Automated assessment systems have also been widely used in introductory programming

classes to support teaching and learning (Douce et al., 2005; Pettit, Homer, & Gee, 2017). An

automated assessment system is a tool that can automatically evaluate the correctness of

students’ programs and provide immediate feedback (De-La-Fuente-Valentín et al., 2013; Gerdes

et al., 2017). With the student data, especially students’ erroneous programs, two types of

feedback systems have been developed and integrated into automated assessment systems.

The first type of feedback system uses artificial intelligence (AI) techniques to analyze

students’ programs and generate personalized feedback for students (Barnes & Stamper, 2010;

Rivers & Koedinger, 2017; Xu & Chee, 2003). With such an intelligent feedback component, an

automated assessment system becomes an intelligent tutoring system that can not only grade

students’ programs but also provide automated feedback. iSnap is an intelligent tutoring system

that can automatically generate hints for Snap programming learners (Price, Dong, & Lipovac,

2017). Price et al. (2017) reported that hints generated by iSnap were helpful to address simple

problems in students’ code. While such systems seem to be an ideal solution to help teachers

identify and address student misconceptions, they are not mature yet and can only handle simple

programs.

The other type of feedback system uses manually designed feedback messages for

common student errors identified using the student data in the automated assessment system

(Becker, 2016; Denny, Luxton-Reilly, & Carpenter, 2014; Pettit et al., 2017). Decaf is such a

system (Becker, 2016). In a study of using Decaf to teach a Java-based CS1 class, Becker (2016)

first used student data in the automated assessment system to identify 30 common compilation

errors and then designed feedback by enhancing the raw Java error messages. His results showed

that the 30 compilation errors accounted for 78% of all errors, and the group receiving feedback

messages made 32% fewer errors than the group only seeing the raw Java compiler error

messages. Prior studies on automated assessment systems with such feedback components have

two issues. First, previous studies using this type of feedback component have only focused on

www.manaraa.com

31

students’ compilation errors (Pettit et al., 2017). Second, the effectiveness of using enhanced

compiler error messages as feedback is still questionable (Denny et al., 2014; Pettit et al., 2017).

Summary

Student misconceptions can interfere with learning of programming, and a variety of

factors may contribute to these inaccurate understandings (Clancy, 2004; Qian & Lehman, 2017;

Smith et al., 1994). While previous studies have cataloged a broad range of student

misconceptions including syntax errors and other difficulties caused by misconceptions, most of

them have focused on post-secondary students (e.g., Altadmri & Brown, 2015; Hristova et al.,

2003; Jackson et al., 2005; Sirkia & Sorva, 2012). In addition, researchers and educators have

developed various instructional approaches and tools to address students’ misconceptions in

introductory programming. Of particular interest for this study is the development of automated

assessment systems that can automatically assess students’ programs and provide immediate

feedback to help students learn (Douce et al., 2005; Gerdes et al., 2017). While many automated

assessment systems have been developed and tested by researchers, most systems to date either

provide feedback based on compiler errors (e.g., Becker, 2016) or provide direct feedback for

correcting simple errors in code (e.g., Gerdes et al., 2017).

Contribution of this Study

This study implemented a data-driven approach to identify secondary school students’

misconceptions in introductory programming using both their compilation and test errors and

provide targeted feedback to promote students’ conceptual change. While previous studies have

investigated a broad range of student misconceptions, most of them have focused on post-

secondary students. As CS education has been expanding into K-12 schools, more information is

needed to understand misconceptions among pre-college learners such as high school students

who take introductory programming courses. Second, although previous studies in computer

science education have discussed student misconceptions from a variety of perspectives, little

work has drawn on our understanding of evolutionary conceptual change and appropriate use of

data-driven feedback to promote conceptual change. Finally, while many automated assessment

systems have been developed and tested by researchers, most systems to date either provide

feedback based on compiler errors (e.g., Becker, 2016) or provide direct feedback for correcting

www.manaraa.com

32

simple errors in code (e.g., Gerdes et al., 2017). This study focused on analyzing both

compilation and test errors in students’ programs to understand and address student

misconceptions.

www.manaraa.com

33

CHAPTER 3: METHODOLOGY

The purpose of this study was to examine secondary school students’ common

misconceptions in introductory programming and investigate how feedback affected the

evolution of students’ (mis)conceptions using a data-driven approach. A two-stage exploratory

design-based study was implemented. In the first stage, common misconceptions exhibited by

students in solving programming problems using an automated learning system were identified.

In the second stage, targeted feedback designed to address identified misconceptions was

integrated into the automated learning system, and the effects of the use of that feedback with a

new group of students were assessed. This section introduces the overarching methodological

framework, settings and participants, and research procedures of conducting the study.

Methodological Framework: Design-Based Research (DBR)

This study used design-based research (DBR) (Anderson & Shattuck, 2012) as the

overarching methodological framework. DBR is a methodology that guides the design,

implementation, evaluation, and refinement of interventions to complex educational problems in

real educational contexts (Anderson & Shattuck, 2012; Brown, 1992; McKenney & Reeves,

2014). DBR studies seek to simultaneously solve real-world problems in classroom settings and

develop principles or theories for helping others facing similar situations (Anderson & Shattuck,

2012; McKenney & Reeves, 2014). The iterative process of conducting a typical DBR study

includes analyzing problems, designing solutions, evaluating solutions, and reflecting on the

results (McKenney & Reeves, 2014).

This study was aimed at solving a complex practical problem in classroom teaching and

contributing to a theory of learning at the same time. DBR is a methodology that guides such

studies (Brown, 1992; McKenney & Reeves, 2014). Understanding and addressing student

misconceptions is complicated but important to classroom teachers. However, innovative

interventions from traditional controlled laboratory settings often face challenges when

transferred to real world classrooms (Brown, 1992). Therefore, this study adopted DBR as the

methodological framework, which suggests iteratively designing, testing, and improving the

intricate solution in classroom settings.

www.manaraa.com

34

Settings and Participants

The research subjects in this study were two groups of high school students enrolled in

two sections of a Java-based programming course as part of a 2017 summer residential program

for gifted and talented students.

The Summer Residential Program and Courses

The setting for this study was a summer residential program that has been offered by

Gifted Education Resource Institute (GERI) at Purdue University for more than four decades.

The goal of this program is to help gifted and talented students from across the country and

around the world develop their talents and expand their abilities. The 2017 summer program was

held from July 2 to July 29, 2017 and consisted of two two-week sections. Section 1 was from

July 2 to July 15, 2017. Section 2 was from July 16 to July 29, 2017. The fee to attend one

section of the summer residential program was $2,400.

Participating students could choose to attend only one section or both. During a given

section of the summer program, each student could select a morning class and an afternoon class

based on his or her grade level. Three levels of classes for students of different grades were

offered, including Comet classes for students who had completed grade 5 or 6, Star classes for

students who had completed grade 7 or 8, and Pulsar classes for students who had completed

grade 9, 10, 11, or 12. At the end of each class in a section, instead of receiving a grade, every

student received a general evaluation of his or her thinking skills, social skills, and self-

regulation exhibited in class.

The introductory Java-based programming class in this study was called Programming

and Computational Thinking, and was offered to Pulsar students in both sections of the summer

residential program (Pulsar 1 and Pulsar 2) in the morning from 8:30 to 11:30 every weekday.

The researcher was the instructor of the introductory Java programming course. The major topics

covered in this course were Program Structure, Input/Output (I/O), Variables and Operators,

Conditionals, and Loops. Appendix A presents the course syllabus. The IDE (integrated

development environment) used in the class was DrJava (version: drjava-20160913-225446).

The JDK (Java SE Development Kit) version was JDK 8.

www.manaraa.com

35

Typically, during every class session, the instructor started with a 30-minute lecture to

review previously learned content (e.g., Input and Output methods in Java) and introduce new

course content (e.g., the syntax of using Conditionals). After the lecture, the instructor used

worked-out examples to show how to solve problems with the programming statements students

had learned about. When the demonstration was done, students had about an hour to solve

problems individually using the automated assessment system Mulberry. After the topic of

Loops was introduced, students started individual and team projects based on their choices (e.g.,

design a text-based interactive game).

Participants

Participants in this study were two groups of high school (Pulsar) students, a total of 25,

who took Programming and Computational Thinking in two different sections of the summer

residential program. The student recruitment was conducted by GERI. To be accepted by this

summer residential program, students had to be identified as high ability according to the GERI

criteria. First, students completed an application form and wrote a statement of purpose

explaining their desire and motivation to participate this program. Second, students were

required to provide two of the following documents to demonstrate their talents: “a) a transcript

showing a GPA of 3.5/4.0 in the talent area; b) an intelligence test report with a minimum score

of 120; c) national achievement or aptitude test results at or above the 90th percentile in a

specific area of study; d) a recommendation letter from a teacher or mentor in the talent area; e)

documentation of involvement in the talent area” (GERI Website, 2018).

Group 1 of this study (Pulsar 1) originally had 15 students, and group 2 (Pulsar 2) had 10

students. However, one student of group 1 was found to have cheated when solving problems, so

that the student’s problem solutions were not an accurate measure of performance. Another

student of group 1 was the champion of a programming competition in his hometown who

solved all the problems in Mulberry within two days and so was considered an outlier in terms of

knowledge and ability. Therefore, these two students were not considered as participants of this

study and were excluded from the data analysis. In the end, the participants of this study were 13

students (9 boys and 4 girls) in group 1 (Pulsar 1) and 10 students (7 boys and 3 girls) in group 2

(Pulsar 2).

www.manaraa.com

36

Mulberry System

Mulberry is a programming learning system designed for Java learners and developed by

the author. It has a pool of 51 programming problems, and students are required to write short

programs to produce the correct output to solve the problems. Every problem has several test

cases, which are pairs of input data and expected output. Mulberry automatically assesses

students’ solutions to each problem by using test cases and comparing the output of their

programs with the expected output. A student solution is considered as correct when its output

matches the expected output for all the test cases. When a student submits a program producing

the incorrect output, he or she receives immediate feedback from the system and can try multiple

times until his or her solution is correct. Mulberry collects all the programs from students when

they attempt to solve the problems. Figure 3.1 shows the major user interface (UI) of Mulberry

where students can read the problem description and submit the solution. The development of

feedback for the system to address students’ misconceptions is described later in this chapter.

Figure 3.1. User Interface (UI) of Mulberry

www.manaraa.com

37

Procedures

Overview

This exploratory DRB study consisted of two stages (see Figure 3.2). In the first stage

(July 2 to July 15, 2017), students of group 1 took the introductory programming class. Mulberry

was integrated into instruction and collected data on student problem-solving attempts. After the

first group’s course ended, data analysis was conducted to identify common programming

misconceptions students demonstrated in their programs to answer RQ 1. In the second stage

(July 16 to July 29, 2017), targeted feedback to address these misconceptions was designed using

principles from conceptual change and feedback theories (diSessa, 2014; Hattie & Gan, 2011;

Vosniadou & Skopeliti, 2014) and added to Mulberry. When students of group 2 took the same

introductory programming class and solved programming problems in Mulberry, they received

the targeted feedback to address their misconceptions. After the second group’s course ended,

data analysis was conducted to assess how the feedback affected the evolution of students’

(mis)conceptions to answer RQ 2. This study was approved as exempt from Institutional Review

Board (IRB).

Stage 1

The goal of the first stage of the study was to identify common programming

misconceptions students exhibited in their programs to address RQ 1. In this stage, students of

group 1 took the introductory programming class and used Mulberry to practice their

programming skills. Each problem in Mulberry was related to one or more of programming

concepts covered in the course. Specific test cases of each problem were designed to reveal

student misconceptions.

Figure 3.3 shows an example problem in Mulberry and its test cases. In this problem,

students needed to write a program that used Heron’s Formula to calculate the area of a triangle.

Design Test Cases
Students of Group 1

Use Mulberry

Analyze Data and

Identify

Misconceptions

Design and Develop

Targeted Feedback

Students of Group 2

Use Mulberry

Analyze Effects of

Feedback

Stage 1

Stage 2

Figure 3.2. Timeline of the study

www.manaraa.com

38

The link to a webpage that explains details about Heron’s Formula was given (see Figure 3.4 for

a screen shot of the webpage). In addition, the problem description gave examples of test cases

which were similar to the real test cases in the backend. When a student submitted a solution to a

problem, Mulberry used the test cases of the problem to automatically assess the correctness of

the solution by comparing the output of the solution with the expected output. When students had

errors in their solutions, they were told that errors existed in their code and were encouraged to

try again. Mulberry collected every student’s solution no matter whether it was correct or

erroneous.

When group 1 of summer 2017 completed the course, they produced 695 problem

solution attempts in total. Because the number of student solutions in group 1 was relatively

small, to obtain a more complete understanding of common student misconceptions, student

solutions of group 1 were combined with previous student solutions in Mulberry produced by

three groups of students who took this class in summer 2016. The problem solutions generated in

summer 2016 came from two groups of Pulsar students and one group was Star students (who

had completed grade 7 or 8). In total, these three groups had 42 students who produced 4178

solutions. Thus, for the final analysis of misconceptions, 4873 student solutions from 55 students

Real Test Cases in the Backend:

Input: 3 4 4 Expected Output: 5.56

Input: 7 8 9 Expected Output: 26.83

Input: 12 13 5 Expected Output: 30.00

Figure 3.3. Example problem Area of Triangle and its test cases

www.manaraa.com

39

were pooled for the identification of common student misconceptions. The following section

describes details about how common student misconceptions were identified.

Data Analysis

An erroneous student solution in Mulberry may have had either compilation errors or test

errors. When a solution had compilation errors, it failed to compile and produced a compilation

error message. In other words, its output was the error message and thus failed to match the

expected output. When a student solution was successfully compiled but produced output that

did not match the expected output exactly, it was an erroneous solution with test errors. When

different students made the same compilation or test error in their solutions, they might have a

common misconception. Therefore, analysis was conducted to find the common compilation and

test errors first. Next, based on the common errors, common student misconceptions were

identified and discussed. As compilation errors are cross-problem while most test errors are

problem-specific, common compilation and test errors were analyzed in different ways.

Link: http://www.mathsisfun.com/geometry/herons-formula.html

Figure 3.4. A screen shot of the webpage explaining Heron’s formula

www.manaraa.com

40

Compilation Errors

A compilation error is a mistake found by the compiler when compiling a program. The

Java compiler will produce error messages describing the compilation error(s) a program has. A

program may have more than one compilation error. Programs for solving different problems

may contain the same compilation errors (e.g., missing semicolons). In this study, when at least

20% of the students showed the same compilation error in their solutions, that compilation error

was defined as a common one. In other words, a common compilation error was one that

occurred in solutions from at least 11 different students (20% of 55).

After common compilation errors were collected, example student code related to these

errors was analyzed to identify common student misconceptions. For instance, one common

compilation error is called possible loss of precision, which occurs when assigning a value of

higher precision to a variable of lower precision. This error indicates students’ problematic or

incomplete understanding of the concept Variables. Students may have the misconception that

variables in Java programming are the same as variables in math that do not have a specific type

and have unlimited precision. In addition, when several common compilation errors suggested

the same misconception, they were combined in the analysis. For example, the common

compilation error reached end of file is typically caused by a missing closing brace }, and

another common compilation error) expected is usually caused by a missing closing parenthesis.

While they are different errors, they both indicate students’ misunderstandings or

misapplications of the concept Program Structure, specifically Java Punctuation.

Test Errors

A test error occurs when a student solution has no compilation error but produces output

that does not match the expected output given the designed test cases as the input. Because every

problem has its own test cases and expected output, test errors are problem-specific. Figure 3

shows the test cases and expected outputs for each test case of the problem Area of Triangle.

For example, when the test case (input) is 3 4 4, a correct student solution should produce the

output 5.56. If the student solution outputs something like 5.562148865321747, it means that the

student solution has a test error that is failing to display only 2 decimal places of the result as

described in the problem. When using the other two test cases of the problem Area of Triangle,

www.manaraa.com

41

the outputs will be similar (with wrong number of decimal places). These were not considered as

different test errors, because they are caused by the same problem of the solution: failing to keep

two decimal places of the result. Hence, one erroneous student solution can only have one test

error.

For the same problem, sometimes different test errors can be identical in essence. For

example, the problem Say Hi to Anyone expects students’ solutions to produce output like

“Hello, Mike!”. Some student solutions omitted the comma (,) in the output while a few students

omitted the exclamation mark (!). Although the different outputs made them two different test

errors, in essence they were identical: missing required punctuation in output. Such test errors

were combined in the analysis of common test errors. Moreover, test errors of different problems

may also point to the same misconception. For example, failing to keep two decimal places of

the result was a common test error in two problems, Area of Triangle and Area of Circle. In the

analysis, these kinds of test errors were treated individually first. They were combined, however,

when discussing the underlying misconceptions.

As test errors are related to specific problems, the first step in collecting common test

errors was to select difficult problems. A difficult problem was defined as a problem solved by

50% or more students (at least 28 students) but with a problem correct rate lower than 50%.

When a student solved a problem, his or her correct rate of solving that problem was named the

student correct rate of problem and was calculated by the following formula:

𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 =
1

the number of a student′s solutions to the problem

The problem correct rate was defined as the correct rate for each problem and was

calculated by the following formula:

𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑎𝑡𝑒 =
∑ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

the number of students who solved the problem

If a problem was only solved by one or two students, the errors in the students’ solutions

may not reveal common misconceptions. If a problem was solved by most of the students but

with a high problem correct rate (e.g., 80%), there may not be enough information for

identifying misconceptions. Hence, this exploratory study only focused on difficult problems.

Using the rules above, the problem Area of Triangle, for example, was identified as a difficult

problem. It was solved by 44 students (80% of the students) with a problem correct rate of 34%

www.manaraa.com

42

(indicating students had many incorrect attempts before solving the problem). In the end, there

were 9 difficult problems identified in this study (see details in the Results section).

For each difficult problem, a test error was considered common when at least 20% of the

students who solved the problem showed the same test error. For example, 44 students solved the

Area of Triangle problem, and 22 of them (48%) showed the same test error that produced the

wrong output 3.16 when the input was 3 4 4. While students might have written very different

incorrect solutions, their key errors were identical. Figure 3.5 illustrates two solutions that were

written by two different students but produced the same wrong output 3.16. In these cases, both

students failed to recognize that the result of the expression (a+b+c) / 2 would be an integer

without decimal values. Common test errors appearing in student solutions to difficult problems

Solution #1

Solution #2

Figure 3.5. Two different students’ solutions producing the same wrong output

www.manaraa.com

43

were used to identify the common misconceptions. For example, the misconception in this

example is that students had a problematic understanding of the Java division operator.

While completed data analysis was not conducted until the first group finished the course,

partial data analysis was conducted throughout stage 1. For example, when all the students had

solved programming problems about the topic Input/Output (I/O) in Mulberry, partial data

analysis of students’ solutions to those problems was conducted to estimate potential

misconceptions. Potential feedback for addressing these misconceptions was also developed

during this process.

Stage 2

The goal of the second stage was to assess how feedback affected the evolution of

students’ (mis)conceptions to address RQ 2. Before students of the second group started the

class, targeted feedback messages to address student misconceptions identified in stage 1 were

designed using principles from conceptual change and feedback theories (diSessa, 2014; Hattie

& Gan, 2011) and added to Mulberry. Because common student misconceptions were identified

based on common compilation and test errors in student solutions, targeted feedback was

designed and provided for every common compilation or test error. However, when several

common errors were related to the same misconception, the targeted feedback for addressing

them was identical or similar. In addition, feedback for addressing common compilation errors

and common test errors was also designed differently.

Feedback for Compilation Errors

As compilation errors are not specific to particular problems, targeted feedback for

addressing them contained general information about possible problems in the student’s solution

and potential ways of improving the solution. For instance, the ; expected error was typically

caused by missing required semicolon(s), and students received the following targeted feedback

message in Mulberry:

www.manaraa.com

44

Because compilation errors can be detected by the IDE students used, drJava, on their

local machine, a general feedback message telling students to test their solutions in drJava before

submitting them to Mulberry was provided for common compilation errors followed by the

targeted feedback message. In addition, the raw error message from the compiler, which was the

only feedback message group 1 students received, was also provided. The following is the full

feedback message group 2 students received in Mulberry when they had the common

compilation error ; expected.

When several common compilation errors were caused by similar mistakes and related to

the same misconception, the same feedback message was provided. For example, the common

compilation errors reached end of file and) expected are both about mismatched or missing

Java separators that should be used in pairs. Therefore, the following feedback message was

provided for both of them as well as two other similar common compilation errors.

The common compilation error { expected seems to be a similar error, but its cause may

be very complicated and often is irrelevant to a missing opening brace {. In order to not mislead

students, no targeted feedback was designed and provided for the { expected error.

Finally, compilation errors are not always precisely caught by the compiler and described

in the compiler error message. For example, mistakes such as missing a single semicolon,

missing braces, or missing the right-hand side of an assignment statement may all result in the

common compilation error illegal start of expression. More importantly, when this error exists,

the compiler error message often points to perfectly good code. Therefore, for such errors, the

www.manaraa.com

45

following general feedback message was provided. In the end, 15 common compilation errors

were collected, and eight unique feedback messages were designed for them (See details in the

Results section).

Feedback for Test Errors

Targeted feedback for addressing common test errors was designed to contain

information regarding the specific problem and potential ways of improving the solution. For

example, when a student solution to the Area of Triangle problem had the common test error

illustrated in Figure 3.5, he or she received the following feedback message:

This feedback message was designed to let students know the current status of their

solution and provide guidance about how to fix the error. Other feedback messages for

addressing common test errors were designed and provided in a similar way.

Among the 9 difficult problems, two of them (the Arithmetic Operations problem and

the Sort Three Integers problem) did not show common test errors, and no feedback was

designed for addressing them. The most common test error of the How Old Are We? problem,

Mismatched input, did not meet the common test error standard of this study; however, because

its underlying misconception was the same as the common test error Mismatched input of the

problem Sum of Digits, the feedback message for addressing it was added. In the end, 10

www.manaraa.com

46

common test errors were identified, and 10 unique feedback messages were designed for them

(see details in the Results section).

Data Analysis

After targeted feedback was added to Mulberry, students of the second group received

feedback messages when their solutions exhibited an identified common error. After the second

group’s course ended, both quantitative and qualitative data analysis were conducted to see

whether and how the targeted feedback made a difference in students’ solutions and so may have

contributed to conceptual change.

Quantitative Data Analysis

The goal of the quantitative analysis was to check whether the targeted feedback had

positive effects on conceptual change. In order to check the effects of feedback, erroneous

student solutions of both group 1 and 2 were categorized into two types: improved and not

improved. When the next solution of an erroneous solution for solving the same problem was

correct, this means that the student had improved this erroneous solution. Hence, this solution

was labelled as improved. When an erroneous solution had compilation errors, and its next

solution was successfully compiled but failed to pass the test, this also means that the student had

improved this erroneous solution, because at least the compilation errors were fixed. Such

erroneous solutions were also labelled as improved. When an erroneous solution had compilation

errors, and its next solution also had compilation errors, it was labelled not improved. When an

erroneous solution had test errors, and its next solution had compilation or test errors, it was also

labelled not improved.

After the categorization was done, three different kinds of improvement rates were

calculated and compared. First, overall improvement rates of both groups were calculated, which

were the proportion of improved solutions. Second, each group’s improvement rate of solutions

with common errors was calculated, which was the proportion of improved solutions among the

solutions with common errors. Third, for group 2, improvement rates of solutions with and

without feedback were calculated, which were the proportion of improved solutions among the

solutions with and without feedback respectively. Chi-square tests were conducted to see

whether the differences in improvement rates were statistically significant.

www.manaraa.com

47

Qualitative Data Analysis

The goal of the qualitative analysis was to understand how targeted feedback affected the

evolution of students’ (mis)conceptions. Analyzing students’ programs qualitatively is vital to

complement quantitative analysis and provide further insights into students’ conceptual

understandings (Fields, Quirke, Amely, & Maughan, 2016). Four feedback cases were selected

for the qualitative analysis. The case selection was based on the following procedures. First, for

each feedback message, an improvement rate was calculated by using the following formula:

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 =
the number of improved solutions with the feedback

the number of occurrences of the feedback

Feedback messages with the best and worst improvement rate were selected as cases.

Cases for compilation errors and test errors were selected separately, so four cases were selected.

As certain feedback messages only occurred once or twice, and their improvement rates were

either 100% or 0%, case selection only used the feedback messages with an above-average

number of occurrences.

When the cases were selected, student solutions of both group 1 and 2 were extracted

from the Mulberry database. While students of group 1 did not receive any feedback (other than

standard compiler messages), their solutions that had the same error as students in group 2 who

got the targeted feedback were used. The patterns of evolution of (mis)conceptions of students

from group 1 and group 2 were compared in detail to determine if targeted feedback affected

conceptual change as demonstrated via their solutions. Figure 3.6 shows an example of how a

student revised his or her solutions to the Area of Triangle problem. In Solution #1, the student

encountered a syntax error, because the return value of the Math.sqrt() method is a double rather

than an integer. In Solution #2, the student fixed the syntax error but still mistakenly used integer

type variables to store possible double values. In Solution #3, the student figured out the variable

type issue but still did not recognize the expression “(a+b+c) / 2” would return an integer and

lose precision. Solution #4 is correct. Qualitative analysis like this can lead to an understanding

of the evolution of student (mis)conceptions as they actively worked to solve a problem. If

targeted feedback were provided when the student submitted Solution #2 and his or her next

solution were correct, this suggests that the feedback might have affected conceptual change.

www.manaraa.com

48

Solution #1 Solution #2

Solution #3 Solution #4

Figure 3.6. A student’s solutions to the Area of Triangle problem

www.manaraa.com

49

CHAPTER 4: RESULTS

Identification of Misconceptions

Common Compilation Errors

To address RQ 1, students’ erroneous problem solutions were analyzed to identify

common errors and specific misconceptions. Among the 4873 student solutions from the 55

students (13 students of group 1 and 42 students of summer 2016), 3632 solutions were

incorrect. Solutions with compilation errors numbered 1752, and solutions with test errors were

1880. Among the 1752 compilation-erroneous solutions, there existed 2335 compilation errors.

By grouping the same compilation errors, 55 distinct compilation errors were identified, and 15

of them were categorized as common ones. The 15 common compilation errors occurred 2151

times in total and accounted for 92% of all compilation errors. Table 4.1 presents these common

compilation errors. The “CE” in the error number stands for “Compilation Error.” Additional

information in the table includes the error name, and the occurrence rate. The occurrence rate is

the number of students who made the error and the percentage out of the 55 total students.

Four error names were simplified from the actual compiler error messages. The program

name error was originally described as something like “public class Abc should be in a file

named Abc.java.” It was caused by the mismatch between the program’s name (the name of the

class) and the program file name, so it was renamed into the simpler version “program name

error.” The class expected error was originally called “class, interface, or enum expected.” As

interfaces and enums were not introduced and used in this course, it was renamed into “class

expected” for short. The reached end of file error was a short version of the original error

message “reached end of file while parsing.” The incorrect use of operators error was a

revision of the original compiler error message “bad operand types for binary operator.”

Based on the 15 errors, three common misconceptions were identified. The following

section provides the details about the common compilation errors and underlying

misconceptions.

www.manaraa.com

50

Table 4.1

Common Compilation Errors

Error Occurrence

CE1 cannot find symbol 50/55 (91%)

CE2 ; expected 48/55 (87%)

CE3 program name error 48/55 (87%)

CE4 class expected 40/55 (73%)

CE5 reached end of file 37/55 (67%)

CE6 not a statement 31/55 (56%)

CE7) expected 29/55 (52%)

CE8 illegal start of expression 29/55 (52%)

CE9 identifier expected 24/55 (44%)

CE10 incompatible types 23/55 (42%)

CE11 variable is already defined 19/55 (35%)

CE12 incorrect use of operators 15/55 (27%)

CE13 illegal start of type 13/55 (24%)

CE14 { expected 13/55 (24%)

CE15 possible loss of precision 13/55 (24%)

1 import java.util.Scanner;
2
3 public class ExampleOne {
4 public static void main(String[] args) {
5
6 Scanner sc;
7 sc = new Scanner(System.in);
8
9 int a = sc.nextInt();
10
11 if(a > 0) {
12 System.out.println(a + " is a positive number.");
13 }
14 else {
15 System.out.println(a + " is not a positive number.");
16 }
17 }
18 }

Figure 4.1. An example Java program

www.manaraa.com

51

Misconception 1: Deficient Knowledge of Fundamental Java Program Structure

Seven of the 15 common compilation errors were related to fundamental Java program

structure, including CE2, CE3, CE4, CE5, CE7, CE9, and CE14. To explain these errors clearly,

Figure 4.1 shows an example Java program, which reads an integer as input and decides if the

integer is positive.

CE2: ; expected typically resulted from the missing semicolon (;) at the end of a

statement. In Java, every statement must end with a semicolon (see line 9 in Figure 4.1 for an

example). However, many students forgot this convention when writing programs and failed to

include the necessary semicolons.

CE3: program name error occurred when a student program’s name (the name of the

class) did not match its file name. A Java program must define a class and be saved in a file with

the same name as the class name followed by the extension .java. The example program in

Figure 4.1 defines a class called “ExampleOne”, so it should be saved in a file called

“ExampleOne.java”. When solving a problem in Mulberry, the required program name was

given in the problem description. However, when submitting solutions, many students did not

use the required class name or misspelled the class name. For example, the required program

name of the problem Area of Triangle was “AreaOfTriangle”, but several students used

“AreaofTriangle”. Though these two names look similar, Java is case sensitive and requires an

exact match of the program name and the file name.

Three errors (CE4, CE5, and CE14) were related to unbalanced braces {}. In Java

programming, braces are used to group statements into code blocks. For example, the opening

and closing braces in line 3 and 18 in Figure 4.1 enclose all the statements of the class

ExampleOne and define the class content block. CE4: class expected indicated an incorrect class

definition and was mainly caused by a missing opening brace { in the class definition line. As

the Java compiler was expecting a correct class definition but an incorrect one was given, it

reported this error. On the contrary, CE5: reached end of file typically resulted from a missing

closing brace }. As the compiler could not find the closing brace the end of the program, this

error occurred. CE14: { expected indicated a missing opening brace in the code. In this study,

only a few times was this error truly caused by a missing opening brace. Many times, it resulted

from having redundant punctuation when defining a class. Some students had punctuation marks

such as comma and space in the class name. A few students added punctuation marks such as a

www.manaraa.com

52

semicolon after the class name. In all these cases, the Java compiler interpreted the code as

meaning that the class name ended before those punctuation marks and was expecting an

opening brace {, and thus CE14 occurred.

CE7:) expected was mainly caused by missing the closing parenthesis). In Java,

parentheses () are used to control the order of expression evaluation or enclose parameters of a

method. Parentheses marks must be used in pairs. However, students in this study often omitted

the closing parenthesis in their code. This error sometimes also occurred when the parentheses

were balanced but the expression within the parentheses was erroneous. For example, line 2 and

3 in Figure 4.2 also led to CE7:) expected, because the Java compiler could not evaluate the

expression after the opening parenthesis and failed to locate the closing parenthesis.

CE9: identifier expected indicated that an identifier did not appear where it should. In

Java, identifiers are the names used as labels, including variable names, class names, method

names, and so forth. While this seemed to be relevant to missing identifiers, in this study, most

of the time it was caused by unbalanced braces. A Java program may have some data members

(e.g., a class variable) and methods (e.g., the main method). Identifiers are necessary to define

the data members and methods. In Figure 4.1, line 4 defines the main method of the class. The

opening brace in the method definition line indicates the start of the main method, and the

closing brace in line 17 means the end of the method block. When a student missed the opening

brace of the main method, the compiler interpreted all the code within the main method block as

statements for defining data members or methods. Thus, the compiler was expecting identifiers,

but other types of code were given (e.g., a method call System.out.println). Omitting the opening

brace of a code block (e.g., the opening brace in line 11 of Figure 4.1) or having extra closing

braces somewhere in the main method might also lead to this error. In both cases, an extra

closing brace mistakenly indicated the end of the main method block and made code after it part

of other data member and method definitions. Hence, CE9 occurred when the complier could not

find the expected identifiers. In addition, several students completely omitted the main method in

their program and directly enclosed statements in the class definition block. This also produced

this error.

www.manaraa.com

53

Misconception 2: Misunderstandings of Java Expressions

Three of the 15 common compilation errors were related to incorrect use of Java

expressions, including CE6, CE8, and CE13. A Java expression is made up of variables,

operators, and method calls, and evaluates to a single value. Expressions are major components

of statements. In this study, students often constructed expressions without following Java proper

syntax.

CE6: not a statement error occurred when the compiler was expecting a syntactically

correct statement but something else was given. It typically resulted from syntactically incorrect

expressions within a statement. Figure 4.2 presents several examples of this error from students’

code. In line 2, the expression within the parentheses is wrong because this student forgot to put

the output message “Don't Worry!” within quotation marks. In line 3, the expression within the

parentheses could not be evaluated to a value as it failed to concatenate the variables m and n and

the string literal “+” using plus signs (+). In line 5, the Java keyword final was used as the

variable name in the assignment expression which is not allowed in Java. In line 6, the student

reversed the order of the value (3.14) and the variable (pi) in the assignment expression. In line

7, the variable name of the assignment statement was missing which made the statement

incomplete. Code in line 9 and 10 made the same error: using illegal mathematical notations in

Java expressions. While brackets may be used to enclose parentheses in mathematical

expressions, brackets and parentheses in Java have different meanings, and extra layers of

parentheses should be used when necessary. In line 9, brackets should be replaced by parentheses

1 //Some lines have more than one error
2 System.out.println(Don't Worry!);
3 System.out.println(m "+" n "=" + sum);
4
5 String final = String.format("%.2f", area);
6 double 3.14 = pi;
7 double = (n+m);
8
9 int a = [(n-n/3)*3]/n;
10 d = a + 0.1a + 0.01a;
11
12 String result = String.format("%.2f, area);
13 System.out.println(result);

Figure 4.2. Examples of erroneous code about expressions

www.manaraa.com

54

to make the expression correct. In line 10, the multiplication operator (*) must be included even

though it would not be required in a math expression.

CE8: illegal start of expression usually resulted from having erroneous expressions in

the code. Line 5 and 9 in Figure 4.2 are two examples of illegal expressions. This error also

occurred when a correct expression was placed in a wrong location. For example, the import

statement should be put before the class definition (see line 1 in Figure 4.1), but a few students

placed it in the class block. While they wrote the import statement correctly, the Java compiler

considered it as an inappropriate statement. Another situation that led to this error was that

something was wrong (e.g., unclosed quotation marks, parentheses, and braces) before a correct

expression. In line 12 of Figure 4.2, this student forgot the closing quotation mark, and thus the

closing parenthesis and the semicolon were considered as part of the string literal by the

compiler. While the next line (line 13) had a correct expression, the error occurred because the

compiler was expecting something matching the previous line.

CE13: illegal start of type usually was a side effect of the previous two errors. For

example, when a Java keyword was used as the variable name in assignment (see line 5 in Figure

4.2) or the import statement was placed within the class definition, this error also occurred.

Sometimes, it was caused by mismatched braces or parentheses. For instance, if the opening

brace in line 11 of Figure 4.1 is omitted, the compiler will consider the keyword else in line 14 as

the start of type, which is illegal.

Misconception 3: Confusion about Java Variables

Five of the 15 common compilation errors were related to deficient knowledge or

misunderstandings of Java variables and variable operations, including CE1, CE10, CE11, CE12,

and CE15.

CE1: cannot find symbol was the most common error in this study. This error occurred

when an identifier, typically a variable, was not declared before being used in the program.

Declaration of variables before using them is required in Java. However, in this study, students

often forgot variable declaration. This result is not surprising because students do not have to

declare variables in math, which is where most students first learned the concept Variable.

Another cause of this error was the incorrect spelling of variable names which led to

inconsistencies between identifiers’ declaration and use. Java identifiers are case sensitive, but

www.manaraa.com

55

many students used lower-case and upper-case letters interchangeably (see line 2 and 3 in Figure

4.3). Some students defined a variable using one name (e.g., n) but used another name to refer to

the variable (e.g., a).

On the contrary, CE11: variable is already defined was due to duplicate variable names.

In Java, every variable in the same scope needs to have a distinct name (identifier). When two

variables were declared using the same name, this error occurred. Line 6 and 7 in Figure 4.3

presents an example of this error.

CE10: incompatible types occurred when assigning a value of an expression to a

variable whose type was incompatible with the expression type. The analysis of students’ code

showed that this error usually appeared in two situations. First, students’ programs often read

input in one type and assigned the input value to a variable with an incompatible type. For

1 //cannot find symbol
2 int sum = 0;
3 Sum = Sum + 1;
4
5 //variable is already defined
6 int result = 0;
7 String result = String.format("%.2f", area);
8
9 // incompatible types
10 int n = sc.nextLine();
11 String name = sc.nextInt();
12
13 int a = 10;
14 int b = 20;
15 if(a = b){...}
16
17 //incorrect use of operators
18 String i = in.nextLine();
19 String j = in.nextLine();
20 String k = i%j;
21
22 double ans = -b+((b^2)-4*a*c)^.5;
23
24 if(a>=b>=c){...} //variables a, b, and c are of int type
25
26 //possible loss of precision
27 int radius = in.nextDouble();
28 int s = (a+b+c)/2.0;
29 int s = Math.sqrt(n);

Figure 4.3. Examples of erroneous code about variables and variable operations

www.manaraa.com

56

example, in line 10 of Figure 4.3, the sc.nextLine() read String input but its value was assigned to

an int variable. Line 11 of Figure 4.3 did it in a reversed way: reading int value and assigning it

to a String variable. The second situation was related to the if-statement (conditional statement).

Many students used the assignment operator (=) instead of the equality operator (==) to compare

the values in the condition expression (see the expression in the parentheses in line 15). In Java,

the condition expression in an if-statement must be a boolean expression, which evaluates to type

boolean. However, because of the use of the assignment operator, the expression in this example

resulted in an int value and thus CE10 occurred.

CE12: incorrect use of operators resulted from using an operator for operands whose

types were not allowed for this operator. One common example was that students used String

type variables as operands for the modulus operator % (see line 18 to 20 in Figure 4.3). In Java,

the modulus operator takes int type operands and returns the remainder. However, some students

did not notice the variable type issues when using the modulus operator. Another common cause

of this error was using Java operators in a mathematical way (see line 22 and 24 for examples).

In line 22, the student wanted to use the ^ operator to get the power of expressions, in particular,

b squared and the square root (the power of one-half) of the expression in parentheses. While the

^ operator may work as the exponentiation operator in math, it is the XOR operator in Java, and

thus the operator was incorrectly used here. In line 24, comparisons were chained, which is

allowed in math. However, Java evaluates comparisons one by one. In this case, the expression

a>=b evaluated to a boolean value, which was then compared to the variable c using the >=

(greater than or equal to) operator. Hence, the comparison operator was not used correctly,

because comparing a boolean with an int was not allowed by the >= (greater than or equal to)

operator.

CE15: possible loss of precision typically occurred when students tried to assign a

double type value (higher precision) to an int type variable (lower precision). Figure 4.3 presents

two examples of this error. In line 27, this student tried to read the input value of the double type

using the Scanner and assigned to an int type variable radius. In line 28, the expression on the

right side of the equals sign evaluated to a double type value but the variable on the left side of

the equals sign was of int type.

www.manaraa.com

57

Common Test Errors

According to the selection standards of difficult problems, nine problems were identified

as difficult problems (see Table 4.2). Two difficult problems, Sort Three Integers and

Arithmetic Operations, did not have any errors that met the common test error selection

standards. Among the other seven difficult problems, 10 common test errors were found. Among

all the test errors, 54% were related to those difficult problems, and the 10 common test errors

accounted for 39% of all test errors of the difficult problems. The 10 common test errors are

numbered and presented in Table 4.3. The “TE” in the error number stands for “Test Error”.

Additional information in the table includes relevant problems, the error name, and the

occurrence rate. Four common misconceptions were identified based the 10 test errors. Details of

the errors and the misconceptions are provided and discussed in the following section.

Table 4.2

Difficult Problems

Problem Correct Rate Solved

Area of Circle 27% 52/55 (95%)

Say Hi to Anyone 28% 55/55 (100%)

Area of Triangle 34% 44/55 (80%)

Quadratic Equation 2 41% 34/55 (62%)

Sort Three Integers 41% 37/55 (67%)

Sum of Digits 42% 50/55 (91%)

Arithmetic Operations 47% 49/55 (89%)

How Old Are We? 47% 55/55 (100%)

Who is Max? 48% 42/55 (76%)

Table 4.3

Common Test Errors

Problem # Test Error Occurrence Rate

Area of Circle
TE1 Mismatched input 28/52 (54%)

TE2 Wrong decimal places 15/52 (29%)

Say Hi to Anyone TE3 Missing punctuation 23/55 (42%)

Area of Triangle
TE4 Integer division issue 22/44 (50%)

TE5 Wrong decimal places 11/44 (25%)

Quadratic Equation 2
TE6 Inappropriate comparison 12/34 (35%)

TE7 Wrong output 7/34(21%)

Sum of Digits TE8 Mismatched input 16/50 (32%)

How Old Are We? TE9 Mismatched input 6/55 (11%)

Who is Max? TE10 Forgot Special Cases 18/42 (43%)

www.manaraa.com

58

Misconception 1: Misunderstandings of Java Input

Among the 10 common test errors, three were related to mismatched input (TE1, TE8,

and TE9). In the problem Area of Circle, the student program had to read the radius and

calculate the area of the circle. The given radius was a number, either an integer or a decimal

number. However, twenty-eight students used the nextInt() method of the Scanner to read the

input. As this method could only read integer input, when the given radius was a decimal number

(e.g., 5.9) the mismatched input error occurred. In the Sum of Digits problem, students were

required to write a program to read a 3-digit integer and calculate the sum of the digits using the

modulus operator and the division operator. Sixteen students made a mistake that called the

nextInt() method three times to read three integers instead of one integer. As only one integer

was given as input, calling the nextInt() method three times made the input mismatched. In the

How Old Are We? problem, the student program had to read two integers as input and calculate

the sum. Some students called the nextInt() method too many times in their solutions or called

the nextLine() method twice to read two Strings rather than integers.

Misconception 2: Misunderstandings of Java Output

Four common test errors were related to incorrect output (TE2, TE 3, TE 5, and TE7).

Among the four errors, two of them (TE2 and TE5) were the same: forgetting to keep 2 decimal

places of the output as required by the problem. In the problems Area of Circle and Area of

Triangle, students were required to output the area as double type with only two decimal places.

The statement for keeping 2 decimal places String.format("%.2f", area) was given in the

problem description, and similar examples were introduced in class. Still many students forgot to

keep 2 decimal places of the output or did not store the result in the variable that was output. In

the problem Say Hi to Anyone, the student program had to read a name such as “Mike” and

output a sentence like “Hello, Mike!”. Between the word “Hello” and the input name, there is a

comma followed by a space. At the end of the sentence, there is an exclamation mark (!). Many

student solutions omitted the required punctuation marks in the output. Possibly they mistakenly

believed that the output of the solution did not have to exactly match the expected output.

Another output-related error occurred when students solved the problem Quadratic Equation 2.

Students were required to write a program to solve standard-form quadratic equations. When the

www.manaraa.com

59

equation has two roots, the correct program should output the smaller one on the first line and the

larger one on the second line. However, some students did not output the roots in the required

order or output the roots in the same line.

Misconception 3: Confusion about Java Operators

Two common test errors were related to inappropriate use of operators. For the problem

Area of Triangle, students were required to use Heron's formula to calculate the area of a

triangle given three integers (say a, b, and c) which represented the lengths of the three sides.

The first step of applying Heron's formula is to calculate s (half of the triangle’s perimeter), by

using the expression: s = (a+b+c)/2. In Java, when the two operands of the division operator are

integers (int type), integer division is used and returns an int type value. For instance, the result

of 11/2 is 5 rather than 5.5. On the other hand, when either operand is a double, the result of the

division will be a double type value. For example, the result of 11/2.0 is 5.5. While this feature

of the division operator was illustrated and discussed during the class, many students did not

notice that when the sum of a, b, and c was an odd number the result of the expression (a+b+c)/2

would be an integer and ignored the decimal places. Thus, the final result of the solution -- the

area of the triangle -- was incorrect. The other error of inappropriate operator use occurred when

solving the problem Quadratic Equation 2. Many students used the Java equality operator == to

compare doubles or Strings. As double type values are not exact in Java, using the equality

operator to compare two doubles might lead to a wrong result. Furthermore, because the problem

required displaying two decimal places of the output (one root or two roots), many students

formatted the roots into Strings and used the equality operator to check if the two roots were

equal. These students believed that when the two roots were equal the equation had one root.

However, in Java, the equality operator does not work for comparing Strings; the correct way is

to call the equals() method to check equality of two String values. In this case, even though the

logic of students’ solutions seemed to be correct for solving the problem, the output failed to

match the expected one given certain test cases.

Misconception 4: Forgetting to Consider Special Cases

The last common test error occurred when solving the problem Who is Max?. To solve

this problem, students were required to write a program to find the greatest number among three

www.manaraa.com

60

given integers. The most common issue here was that many students failed to consider special

cases of the given integers. When two or three integers were equal, many student solutions did

not produce any output, because their conditional statements did not consider such cases. As

novices, it is not surprising that they forgot to inspect boundary conditions and/or special cases.

Overall Effects of Feedback

To address RQ2, both quantitative and qualitative data analysis were conducted to see

whether and how the targeted feedback made a difference in students’ solutions and so may have

contributed to conceptual change. This section presents the results of the quantitative analysis

which checked whether the targeted feedback had positive effects on conceptual change.

Difference in Overall Improvement Rates

Students’ solutions of the two groups were used to analyze the effects of feedback. In

total, group 1 and group 2 made 529 and 399 erroneous solutions respectively. When calculating

the improvement rate, student solutions with no “next solution” were excluded from the analysis,

because without a “next solution” the improvement of an erroneous solution could not be

determined. In the end, group 1 had 521 erroneous solutions, and 176 of them were improved.

Group 2 had 397 erroneous solutions, and 177 of them were improved. Thus, the improvement

rates of the two groups were 34% and 45% respectively (see Figure 4.4). A chi-square test was

performed to examine the relationship between group and improvement rate. The improvement

rates of the two groups were significantly different, χ2 (1, N = 918) = 11.11, p < .001. Overall,

students of group 2 were more likely to improve their erroneous solutions than those of group 1.

Difference in Improvement Rates of Solutions with Common Errors

As students of group 2 received targeted feedback when their solutions had common

errors, it was expected that students of group 2 would have a better improvement rate of

solutions with common errors than students of group 1. Among the 521 erroneous solutions of

group 1, 310 had common errors, and 119 of them were improved. Among the 397 erroneous

solutions of group 2, 170 solutions showed common errors and received feedback, and 99 of

them were improved. Hence, the two groups’ improvement rates of solutions with common

errors were 38% and 58% respectively (see Figure 4.5). The results of a chi-square test indicated

www.manaraa.com

61

that the difference in improvement rates was significant, χ2 (1, N = 480) = 17.45, p < .001. The

results suggest that when a student solution had common errors, a student who received targeted

feedback was more likely to effectively improve his or her solution.

Difference in Improvement Rates of Solutions with and without Feedback

For group 2, while 170 erroneous student solutions received feedback, the other 227

solutions, which had non-common errors, did not receive targeted feedback. It was also expected

that solutions with feedback would have a better improvement rate than those with no feedback.

The results confirmed the hypothesis. For solutions with targeted feedback, 99 were improved

with an improvement rate of 58%; for solutions without targeted feedback, 78 were improved

with an improvement rate of 34% (see Figure 4.6). The results of a chi-square test indicated that

the difference was significant, χ2 (1, N = 397) = 22.42, p < .001. In other words, when a feedback

message was presented, a student of group 2 was more likely to effectively improve his or her

erroneous solution.

Figure 4.4. Overall improvement rates

34%

45%

0%

10%

20%

30%

40%

50%

Group 1 Group 2

Figure 4.5. Improvement rates of common errors

38%

58%

0%

10%

20%

30%

40%

50%

60%

70%

Group 1 Group 2

www.manaraa.com

62

Effects of Feedback on Evolution of Students’ Misconceptions

Qualitative analysis of student code was also used to address RQ2. The goal of the

qualitative analysis was to understand how targeted feedback affected the evolution of students’

(mis)conceptions. Four feedback cases were selected for the qualitative analysis according to the

case selection procedures described in the Methodology section. First, improvement rates of each

feedback message were calculated. Table 4.4 and Table 4.5 present the improvement rates of

feedback for compilation and test errors respectively. In addition to the improvement rate, the

number of occurrences of the errors and the number of improvements are also included in the

tables (see the numbers within the parentheses). While students of group 1 did not receive

targeted feedback messages for the common errors, their improvement rates are also presented in

the tables in order to make comparisons. As no student in group 2 made the common test errors

TE6 and TE9, relevant feedback messages TFB6 and TFB9 are not included in Table 4.5. See

Appendix B for detailed information of each feedback message.

Figure 4.6. Improvement rates of group 2’s solutions without and with feedback

34%

58%

0%

10%

20%

30%

40%

50%

60%

70%

Without Feedback With Feedback

www.manaraa.com

63

Table 4.4

Feedback for Compilation Errors

Feedback Relevant Errors
Improvement Rate

Group 2 Group 1

CFB1 CE4: class expected

CE5: reached end of file

CE7:) expected

CE9: identifier expected

50% (18/36) 34% (26/76)

CFB2 CE1: cannot find symbol

CE6: not a statement

CE8: illegal start of expression

CE13: illegal start of type

61% (35/57) 45% (35/77)

CFB3 CE2: ; expected 43% (10/23) * 45% (18/40)

CFB4 CE3: program name error 83% (25/30) ** 54% (30/56)

CFB5 CE10: incompatible types 100% (1/1) 100% (2/2)

CFB6 CE11: variable is already defined 63% (5/8) 50% (3/6)

CFB7 CE12: incorrect use of operators 67% (2/3) 50% (1/2)

CFB8 CE15: possible loss of precision 50% (1/2) 75% (3/4)

Note. * indicates the feedback with the worst improvement rate, and ** indicates the feedback

with the best improvement rate. Average number of occurrences was 20.

Table 4.5

Feedback for Test Errors

Feedback Relevant Errors
Improvement Rate

Group 2 Group 1

TFB1 TE1: Mismatched input 17% (1/6) * 11% (3/28)

TFB2 TE2: Wrong decimal places 50% (3/6) 67% (2/3)

TFB3 TE3: Missing punctuation 50% (3/6) 50% (6/12)

TFB4 TE4: Integer division issue 83% (5/6) ** 50% (2/4)

TFB5 TE5: Wrong decimal places 33% (1/3) 29% (2/7)

TFB7 TE7: Wrong output 100% (1/1) 100% (1/1)

TFB8 TE8: Mismatched input 25% (1/4) 33% (1/3)

TFB10 TE10: Forgot Special Cases 20% (1/5) 14% (2/14)

Note. * indicates the feedback with the worst improvement rate, and ** indicates the feedback

with the best improvement rate. Average number of occurrences was 4.63.

www.manaraa.com

64

According to the case selection procedures, the average number of occurrences of

common compilation and test errors were calculated, which were 20 and 4.63 respectively. Thus,

the four selected cases were CFB4, CFB3, TFB4, and TFB1 because the goal was to identify

extreme cases (best and worst rates of improvement) with an above average number of

occurrences. CFB4 and CFB3 were the compilation error feedback messages (CE Feedback)

with the best and worst improvement rate (IR). TFB4 and TFB1 were the test error feedback

messages (TE Feedback) with the best and worst improvement rate (IR). Table 4.6 presents the

details about the four feedback messages.

Table 4.6

Selected Feedback Cases

Type IR Content

CE Feedback

with Best IR

83% The name of your program is wrong!

Please name your program as XXX!

CE Feedback

with Worst IR

43% You may miss semicolon ; somewhere in your code. Check if you use

semicolon ; appropriately.

TE Feedback

with Best IR

83% An integer divided by another integer gives you an integer in Java.

For example, 11 / 2 gives 5.

However, 11 / 2.0 gives you 5.5

The following code may help you solve your problem:
double s = (a + b + c) / 2.0;

TE Feedback

with Worst IR

17% The user may enter a number such as 2.3. Your program has to read a

double instead of an int.

The following code may help you solve your problem:
Scanner in = new Scanner(System.in);
double radius = in.nextDouble();

Note. XXX will be replaced by the required program name of a problem.

Compilation Error Feedback Message with Best Improvement Rate

The feedback message for addressing the program name error showed an improvement

rate of 83%. The program name error was a straightforward compilation error which occurred

when a student program’s name (the name of the class) did not match its file name. In Mulberry,

the required program name was provided in the problem description. However, students often

forgot to use the required name or misspelled the program name. The targeted feedback message

for addressing this error was also straightforward and described what was wrong and provided

www.manaraa.com

65

the correct program name (see Table 4.6). The analysis of relevant student solutions found

different patterns of improving the code between students of group 2 and group 1.

When students of group 2 had the program name error in their solutions, they typically

could directly locate the error and revise the program name into the correct one. Figure 4.7a

presents a typical code improvement scenario of students in group 2. This student first named the

class as Problemsolving and submitted the solution. In the next solution, this student revised the

class name into the correct one SumOfTwo. On the contrary, students in group 1 often had

intermediate solutions to fix this error. Figure 4.7b presents a student case. In the first solution,

this student named the class as Project01 while the required program name was HelloAnyone.

Solution #1 Solution #2

1 //SumOfTwo// //SumOfTwo//

2

3 import java.util.Scanner; import java.util.Scanner;

4

5 public class Problemsolving { public class SumOfTwo {

6 public static void main (String[]args){ public static void main (String[]args){

7

8 Student code were hidden Student code were hidden

9 } }

10 } }

Figure 4.7a. Group 2 student code example of improvement of program name error

Solution #1 Solution #2

1 import java.util.Scanner; import java.util.Scanner;

2

3 public class Project01 { public class Project01 {

4 public static void main (String[] args) { public static void main (String[] args) {

5

6 Student code were hidden Student code were hidden

7 } }

8 } }

Solution #3

1 import java.util.Scanner;

2

3 public class HelloAnyone {

4 public static void main (String[] args) {

5

6 Student code were hidden

7 }

8 }

Figure 4.7b. Group 1 student code example of improvement of program name error

www.manaraa.com

66

Next, rather than revising the class name, this student deleted the whole class definition line.

Because students of group 1 only received the default compiler message as feedback, this student

might see an error message like “Error: class Project01 is public, should be declared in a file

named Project01.java.” With this error message, as a novice, students might not be able to

understand what exactly was wrong. In this case, this student might mistakenly believe that the

line public class Project01 was wrong and should be deleted. Finally, in the third solution, he or

she realized that it was a program name error and fixed the problem.

While this feedback message was simple, it helped students understand what was wrong

with the program and how to fix it. The program naming rule was introduced in the class and

repeatedly practiced during problem solving. Hence, students probably knew this rule. However,

without a targeted feedback message, they might have difficulties to understand or notice the

error. The feedback helped to reduce the number of intermediate solutions during the code

improvement process.

Compilation Error Feedback Message with Worst Improvement Rate

The feedback message for addressing the ; expected error was identified as the worst

case. The improvement rate of group 2 (43%) was even less than that of group 1 (45%). This

feedback message seemed to be relatively ineffective. However, the qualitative analysis of

student code revealed that the quantitative analysis failed to identify all the improved cases.

Figure 4.8 presents two continuous solutions of the student Mike in group 2. In the first

solution, he missed the semicolons in line 6 and 7. Thus, this solution failed to be compiled, and

the feedback telling him to add the semicolons was presented. In the next solution, this student

added the necessary semicolons. While the ; expected error was fixed, this solution still had

Solution #1 Solution #2

1 //Saymore //Saymore

2 import java.util.Scanner; import java.util.Scanner;

3 public class HelloRabbit { public class HelloRabbit {

4 public static void main(String[] args){ public static void main(String[] args){

5 //make output //make output

6 System.out.println("Don't worry!") System.out.println("Don't worry!");

7 System.out.println("I can cure you") System.out.println("I can cure you");

8 } }

9 } }

Figure 4.8. Mike’s code example of improvement

www.manaraa.com

67

compilation errors. In the comment in line 1, Mike wrote Saymore, which was the required

program name for solving the problem Say More. However, in line 3, he named the class as

HelloRabbit, which led to the program name error. In this study, this solution was labeled not

improved, because the first (Solution #1) and the next (Solution #2) solution both had

compilation errors. While Mike did improve his program and fixed the; expected error, the

quantitative analysis did not identify the solution as improved. Therefore, the feedback message

was effective in addressing the specific error, and so this feedback message showed positive

effects even though the quantitative analysis did not detect it.

Test Error Feedback Message with Best Improvement Rate

The feedback message with the best improvement rate for addressing test errors was

TFB4. It was designed to address the test error TE4: Integer division issue of the problem Area

of Triangle. This error occurred when int type variables or values were used inappropriately in

an expression with the division operator, because integer division in Java returns an int type

value and ignores the decimal places. The feedback TFB4 explained how this error happened and

provided a possible way to fix it. The analysis of student code indicated that students of group 2

made fewer intermediate solutions to fix this error.

Solution #1 Solution #2

1 import java.util.Scanner; import java.util.Scanner;

2

3 public class AreaOfTriangle { public class AreaOfTriangle {

4 public static void main(String[] args) { public static void main(String[] args) {

5 Scanner in = new Scanner(System.in); Scanner in = new Scanner(System.in);

6 int a = in.nextInt(); int a = in.nextInt();

7 int b = in.nextInt(); int b = in.nextInt();

8 int c = in.nextInt(); int c = in.nextInt();

9

10 int s = (a+b+c) / 2; double s = (a+b+c) / 2.0;

11

12 a = (s - a); a = (s - a);

13 b = (s - b); b = (s - b);

14 c = (s - c); c = (s - c);

15

16 double d = Math.sqrt(s*a*b*c); double d = Math.sqrt(s*a*b*c);

17 String result=String.format("%.2f",d); String result=String.format("%.2f",d);

18 System.out.println(result); System.out.println(result);

19 } }

20 } }

Figure 4.9a. Group 1 student code example of improvement

www.manaraa.com

68

According to the quantitative data, students of group 2 made this error six times, and five

of them were successfully improved with the feedback. The analysis of the one failed case

showed that the student also fixed this error, but the fix of the error led to another problem.

Figure 4.9a shows the student’s two solutions. The first solution had the integer division issue

(see line 10). The second solution fixed this error but created a compilation error possible loss of

precision, because the three assignment expressions in line 12, 13, and 14 all tried to assign

double values to int type variables. Thus, this was not considered as an improved solution in the

quantitative analysis, even though the error for which the feedback was given was successfully

fixed.

When students in group 1 tried to fix this error, they tended to have more middle

solutions. Figure 4.9b shows an example. This student, Emily, made this error in the first

solution. In the next solution, she changed the type of the variable s from int to double. She was

on the right track, but this change did not completely fix this error, because the division

Solution #1 Solution #2

1 import java.util.Scanner; import java.util.Scanner;

2 public class AreaOfTriangle{ public class AreaOfTriangle{

3 public static void main(String[] args) { public static void main(String[] args) {

4 Scanner in = new Scanner(System.in); Scanner in = new Scanner(System.in);

5 int a = in.nextInt(); int a = in.nextInt();

6 int b = in.nextInt(); int b = in.nextInt();

7 int c = in.nextInt(); int c = in.nextInt();

8 int sum = a + b + c; int sum = a + b + c;

9 int s = sum / 2; double s = sum / 2;

10 //Student code were hidden //Student code were hidden

11 } }

12 } }

Solution #3

1 import java.util.Scanner;

2 public class AreaOfTriangle{

3 public static void main(String[] args) {

4 Scanner in = new Scanner(System.in);

5 int a = in.nextInt();

6 int b = in.nextInt();

7 int c = in.nextInt();

8 int sum = a + b + c;

9 double s = sum / 2.0;

10 //Student code were hidden

11 }

12 }

Figure 4.9b. Emily’s code example of improvement

www.manaraa.com

69

expression sum / 2 would still return an integer value and ignore the decimal places. Finally, she

fixed the error completely in the third solution. If she had received the feedback message, she

might have fixed the error in Solution #2, instead of Solution #3.

Test Error Feedback Message with Worst Improvement Rate

The feedback message with the worst improvement rate for addressing test errors was

TFB1. It was for addressing the test error TE1: Mismatched input of the problem Area of

Circle. In this problem, the radius of the circle could be an integer or a decimal number (e.g.,

5.9). When a student solution used the nextInt() method of the Scanner to read the radius, the

mismatched input error occurred. Both groups had poor improvement rates on this error. The

feedback TFB1 explained how the error occurred and offered code for fixing it. The analysis of

student code found that students in group 2 had a better improvement rate than was shown in the

quantitative analysis.

According to the quantitative data, students of group 2 made this error six times, but only

one of them successfully improved with the feedback. The analysis of student code showed that

among the five “not improved” solutions, four were actually “improved,” and fixed this error but

still had other errors. Figure 4.10a presents such an example. This student, Alan, had the

mismatched input error in Solution #1 and fixed this error in Solution #2. However, his second

solution output the wrong variable; he should have printed the variable result rather than the

variable area. In fact, this made Solution #2 get the test error TE2: Wrong decimal places. In

this scenario, the quantitative analysis considered the solution as “not improved” even though the

student was able to fix the identified error.

Solution #1 Solution #2

1 import java.util.Scanner; import java.util.Scanner;

2 public class AreaOfCircle { public class AreaOfCircle {

3 public static void main (String[]args){ public static void main (String[]args){

4 Scanner in = new Scanner(System.in); Scanner in = new Scanner(System.in);

5 int a = in.nextInt(); double a = in.nextDouble();

6 double area = a*a*3.14; double area = a*a*3.14;

7

8 //output //output

9 String result=String.format("%.2f",area); String result=String.format("%.2f",area);

10 System.out.println(area); System.out.println(area);

11 } }

12 } }

Figure 4.10a. Alan’s code example of improvement

www.manaraa.com

70

In contrast, students of group 1 made this error 28 times with three successful

improvements. Among the other 25 failed cases, only three identified the error immediately and

made some partial improvements. Figure 4.10b shows the improvement case of the student

Mark. He made this error in Solution #1 and partially fixed it in Solution #2 by changing the type

of the variable a to double. Meanwhile, he added a new line String.format("%.2f", result).

However, he forgot to add the semicolon to end this statement, which led to the compilation

error ; expected. Next, he fixed the ; expected error in Solution #3 by adding the semicolon.

Finally, in Solution #4, he fixed the other part of the mismatched input error, which was

changing nextInt() method into nextDouble() method. While Alan fixed this error in the end, he

required several steps. If the feedback message had been presented, he might not have required

those intermediate solutions.

Solution #1 Solution #2

1 import java.util.Scanner; import java.util.Scanner;

2 public class AreaOfCircle{ public class AreaOfCircle{

3 public static void main(String[] args) { public static void main(String[] args) {

4 Scanner in = new Scanner(System.in); Scanner in = new Scanner(System.in);

5 int r = in.nextInt(); double r = in.nextInt();

6 double result = r * r * 3.14; double result = r * r * 3.14;

7 String.format("%.2f", result)

8 System.out.println(result); System.out.println(result);

9 } }

10 } }

Solution #3 Solution #4

1 import java.util.Scanner; import java.util.Scanner;

2 public class AreaOfCircle{ public class AreaOfCircle{

3 public static void main(String[] args) { public static void main(String[] args) {

4 Scanner in = new Scanner(System.in); Scanner in = new Scanner(System.in);

5 double r = in.nextInt(); double r = in.nextDouble();

6 double result = r * r * 3.14; double result = r * r * 3.14;

7 String.format("%.2f", result); String.format("%.2f", result);

8 System.out.println(result); System.out.println(result);

10 } }

11 } }

Figure 4.10b. Mark’s code example of improvement

www.manaraa.com

71

Summary of Results

In this study, students’ erroneous solutions were analyzed to identify common errors and

specific misconceptions to address RQ 1. Fifty-five distinct compilation errors were identified,

and 15 of them were categorized as common ones. The data also revealed that the 15 common

compilation errors accounted for 92% of all compilation errors. Based on the 15 common

compilation errors, three underlying student misconceptions were identified, including deficient

knowledge of fundamental Java program structure, misunderstandings of Java expressions, and

confusion about Java variables. In addition, 10 common test errors were identified based on nine

difficult problems. The results showed that 54% of all test errors were related to those difficult

problems. The 10 common test errors accounted for 39% of all test errors of the difficult

problems. Four common student misconceptions were identified based on the 10 common test

errors, including misunderstandings of Java input, misunderstandings of Java output, confusion

about Java operators, and forgetting to consider special cases.

To address RQ2, both quantitative and qualitative data analysis were conducted to see

whether and how the targeted feedback made a difference in students’ solutions and so may have

contributed to conceptual change. The results of quantitative analysis indicated that targeted

feedback messages enhanced students’ rates of improving erroneous solutions. Students of group

2 (the group receiving targeted feedback messages) showed significantly higher improvement

rates in all erroneous solutions and solutions with common errors compared to students of group

1. Within group 2, students also showed a significantly higher improvement rate in solutions

with targeted feedback messages compared to solutions without targeted feedback messages. All

these results suggest that with targeted feedback messages, students were more likely to correct

errors in their code. The qualitative analysis of students’ solutions of four selected cases noted

that when improving the code, students of group 2 made fewer intermediate incorrect solutions

than students in group 1. In other words, the targeted feedback messages appear to have helped

to promote conceptual change.

www.manaraa.com

72

CHAPTER 5: DISCUSSION AND CONCLUSIONS

Student Misconceptions in Introductory Programming

Common Compilation Errors and Underlying Misconceptions

In this study, 55 distinct compilation errors were identified, and 15 of them were

categorized as common ones. The results are consistent with previous studies on college

students’ compilation errors in introductory programming (see Becker, 2016 and Pettit et al.,

2017). Most common compilation errors in this study were also found to be common among

college CS1 students. However, there is one exception. The CE3: program name error found in

this study did not appear on the common compilation error list of prior studies (Becker, 2016).

This minor difference is not so surprising, because this error may not occur in a different

instructional or research setting. For example, in a study of using the tool CodeWrite, students

were requried to implement a method body to complete an exercise (Denny, Luxton-Reilly, &

Tempero, 2012). In that study, students had no chance to make the program name error, as

they did not have to write the program name. In addition, when the programming exercises allow

arbitrary program names, the program name error should not be a common error because no

specific program name is required. At the same time, students in this study did not have to define

a method with a return statement, so errors related to the return statement, which were identified

as common errors by prior studies (Brown & Altadmri, 2017; Denny et al., 2012), did not appear

in this study. While minor differences exist between common compilation errors of this study

and previous studies on college students, overall the common errors are similar. In other words,

secondary school students in this study made similar common Java compilation errors to college

students.

Based on the 15 common compilation errors, three underlying student misconceptions

were identified, including deficient knowledge of fundamental Java program structure,

misunderstandings of Java expressions, and confusion about Java variables. The first

misconception, deficient knowledge of fundamental Java program structure is related to students’

knowledge of basic Java syntax. In this study, students often made syntax errors, such as missing

semicolons (CE2), incorrectly naming their programs (CE3), and mismatching braces and

www.manaraa.com

73

parentheses (CE4, CE5, CE7, CE9, and CE14). These errors seem to be superficial and trivial.

Knowing relevant syntactic knowledge such as adding a semicolon to end a statement is not

challenging, and many times students in this study were able to construct syntactically correct

programs or fix those syntax errors eventually. This suggests that students have knowledge about

Java program structure. However, the repetition of these syntax errors indicates that there may

exist a deeper problem. While students may be aware of relevant syntactic knowledge about Java

program structure, they may not be able to understand and apply the knowledge correctly

(Krathwohl, 2002). When the task gets complicated, the task complexity and students’

unfamiliarity with Java syntax may increase the demand on cognitive load so that students may

have difficulties (Sanders & Thomas, 2007; Sweller, 1988). Hence, they start to omit semicolons,

use wrong program names, and mismatch braces. Taber (2013) points out that conceptual

knowledge (knowledge of concepts) has implicit elements that are not typically taught in class.

For example, students in this study were taught the fundamental Java program structure, but they

did not learn why the semicolons are necessary, the basic mechanism of the compiler, and what

possible error messages would be when the program structure is wrong. Without the implicit

knowledge, students may be able to write a correct Java program, but they have deficient

knowledge that may lead them to make relevant mistakes. Students may learn certain implicit

knowledge during the programming practice by themselves. However, explicitly teaching

implicit knowledge of Java program structure, instead of simply introducing the facts about the

fundamental Java program structure, may help students better understand the concept (Muller et

al., 2007; Sajaniemi & Kuittinen, 2005).

The other two misconceptions, misunderstandings of Java expressions and confusion

about Java variables, are mainly related to the conflicts between students’ existing knowledge

and new knowledge. While students’ unfamiliarity of Java syntax may contribute to their errors

of using Java expressions and variables, the major interference appears to be from students’ prior

knowledge. While sometimes students’ errors in constructing Java expressions were due to

certain syntax problems (e.g. missing or mismatching quotation marks), the analysis of student

code revealed that students frequently attempted to write Java expressions in ways similar to how

they would write expressions in math class. For instance, some students omitted the

multiplication operator (*) in their expressions (e.g. d = a + 0.1a + 0.01a). While the

multiplication operator can be omitted in a math expression, it is required in a Java expression.

www.manaraa.com

74

Similarly, students’ prior knowledge about the concept variable also interfered with their

learning of Java variables and variable operations. For example, many students in this study

made errors related to variable types and precision. Variables in math do not have a specific type

and have unlimited precision, but in Java variable types and precision must be specified.

Previous research has indicated that one dominant source of students’ misconceptions is

their prior knowledge (Bonar & Soloway, 1985; Smith et al., 1994). In the learning of computer

programming, students’ existing math knowledge is an important factor contributing to student

misconceptions (Clancy, 2004; Qian & Lehman, 2017). Students construct new knowledge based

on their existing knowledge (Ausubel, 2000; Jonassen, 1991), and when the new knowledge

conflicts with their prior knowledge, students have confusion between pre-instructional

conceptions and new conceptions and thus misconceptions begin to form (Özdemir & Clark,

2007; Taber, 2013). Java expressions and variables share many similarities with those of math.

When students in this study wrote their Java code, they sometimes confused Java expressions

and variables with the math ones, as they had learned similar concepts in math. According to

conceptual change theories (Özdemir & Clark, 2007; Taber, 2013), a student’s misconception

has both correct and incorrect elements. To promote conceptual change, it is important to help

students fix the incorrect elements and refine their understanding of the relationships between

new knowledge and existing conceptual structure (diSessa, 2014). Hence, in instruction, teachers

should highlight the differences between Java and math knowledge to help students reduce

confusion and reach a better understanding of the computer science concepts.

It is important to note that all the compilation errors could be detected by the IDE

students used, drJava, on their local machine. In other words, if students had compiled their

solutions before submitting them to Mulberry, they should not have had any compilation errors

in their code. However, students in this study still made a large number of compilation errors.

This may indicate that students often failed to use the IDE to check if their solutions had

compilation errors before submitting them to Mulberry. When student developed their solutions,

they often only used the built-in Java editor of Mulberry (see Figure 3.1) and failed to use drjava

to test their solutions. Another possibility is that students could not understand the compiler error

messages given by the IDE. For beginners, raw compiler error messages are “cryptic and

uninformative, often terse and misleading” (Becker, 2016, p. 126). Compiler error messages

usually describe errors using technical terms, which make them difficult to understand. In

www.manaraa.com

75

addition, these error messages are not always precise and sometimes point to the lines with no

errors. Therefore, it is possible that students tried to compile their solutions using the IDE, but

they could not understand the error messages from the IDE and so submitted their solutions as is

ignoring the errors. Prior studies have indicated that novices often have limited knowledge of

compiler error messages, locating errors, and fixing errors (Becker, 2016; Fitzgerald et al., 2008;

McCauley et al., 2008). Hence, explicitly teaching knowledge of compiler error messages and

skills of debugging may help students better use the features of the IDE and reduce the

compilation errors in their programs.

Common Test Errors and Underlying Misconceptions

In this study, 10 common test errors were identified. Different from compilation errors,

test errors are problem-specific. While previous studies have used student data in automated

assessment systems to identify common compilation errors, few of them have examined common

test errors and relevant student misconceptions. In this study, the 10 common test errors were

identified based on nine difficult problems. Our results showed that 54% of all test errors were

related to those difficult problems. The 10 common test errors accounted for 39% of all test

errors of the difficult problems. In other words, difficult problems and common test errors can

play an important role in understanding student misconceptions. Hence, researchers and

educators should pay attention to students’ non-compilation errors, rather than only focusing on

the compilation errors.

As common tests errors are based on specific programming problems, the error details

themselves may not be important to educators and researchers in other instructional settings.

However, the relevant student misconceptions behind the errors can be meaningful and helpful to

others. Four common student misconceptions were identified based on the 10 common test

errors, including misunderstandings of Java input, misunderstandings of Java output, confusion

about Java operators, and forgetting to consider special cases.

The first two misconceptions, misunderstandings of Java input and output, are related to

the concept Input/Output (I/O). In computer programming, the required input and expected

output of a program must be exact. If a program can only read one integer at one time, inputting

two integers or decimal numbers will result in errors and/or make the program crash. Similarly,

if the expected output of a program is two words separated by a comma, outputting two words

www.manaraa.com

76

separated by a space or without a separator makes this program inaccurate or incorrect. However,

students in this study may not have understood the need for exactness of I/O in computer

programming. They often failed to design code to read input or produce output in an exact way.

One problem in Mulberry required a three-digit integer as input, but many students designed a

program that read three integers as three digits rather than a single three-digit integer. Several

problems required outputting decimal numbers with only two decimal places; however, students

repeatedly failed to keep two decimal places. As novices, they might have had difficulties in

using Java statements related to I/O. However, I/O statements were used in almost every

program they wrote, and code examples for reading various kinds of inputs and producing

special output (e.g. outputting a number with n decimal places) were introduced in class and/or

provided in problem descriptions. Hence, students’ unfamiliarity with relevant Java statements

may not be an essential problem, but their misunderstandings of the required exactness of I/O in

computer programming can be vital.

First, students’ everyday experience of using computers may make them believe that

computers have certain intelligence like a human and can understand what they mean (Miller,

2014; Pea, 1986). These days, students use graphical/touchable user interfaces all the time and

may have limited experience in using a text-based user interface. Intelligent technologies such as

Apple Siri and Microsoft Cortana make computers more human-like. Such life experiences may

bring them a feeling that computers are smart enough to understand what they mean in the code.

Second, their natural language may also make them believe that vagueness in code does not

matter (Bonar & Soloway, 1985; Miller, 2014). Therefore, in instruction, teachers should help

students build the understanding that computers are machines precisely executing code line by

line and have no ability to understand ambiguous code.

The third misconception, confusion about Java operators, is related to students’ prior

math knowledge. In this study, two operators, the division operator (/) and the equality operator

(==), were frequently used incorrectly by students. While the Java equality operator does not

exist in math, students had learned the equality concept and meaning of the equals sign (=) in

math. In math, when using the division operator to check for equality of two values, the types of

the operands will not affect the results. For example, the mathematical expressions 11/2 and

11/2.0 both give 5.5. However, in Java, when the types of the operands are different, the result of

the operation may be different depending on the operator or method used (e.g. checking for

www.manaraa.com

77

equality of String values). When students in this study used Java operators, they might not have

appreciated the differences, even though the differences were introduced in class. On the other

hand, the differences between Java and math operators are subtle and difficult for students to

notice.

Inappropriate use of operators typically does not produce any compilation errors. Without

an obvious error message, students may believe that no error exists in their code (Ben-David

Kolikant & Mussai, 2008). In addition, students need sufficient knowledge about Java variables

to fully understand why an operator has certain behaviors. For example, to understand why the

equality operator cannot be used to compare double or String type variables, students have to

know that floating-point numbers are not precise in programming, and Strings are different from

primitive data types. Therefore, in instruction, only introducing special features of certain Java

operators may not help students understand the differences between Java and math operators.

Explaining operator-related concepts such as variables and providing details about relationships

between Java operators and variables may be an effective instructional strategy.

The last misconception, forgetting to consider special cases, is related to students’

strategic programming knowledge (also called programming strategies). For novices who have

just learned a programming language, their knowledge of the syntax and programming concepts

is usually fragmentary and not well-organized into meaningful structures (Clancy & Linn, 1999;

Davies 1993; Lister et al., 2006;). Novices may be able to write a syntactically correct program

but fail to consider boundaries of conditions and unexpected cases, because they lack certain

patterns and strategies that experts use to evaluate and debug programs (Fisler et al., 2016;

Sajaniemi & Prieto, 2005). In this study, students were all novices, so it is not surprising that

they forgot to inspect boundary conditions and/or special cases. Prior studies have noted that

explicitly teaching programming strategies, such as debugging strategies, can improve students’

strategic knowledge and help them better understand programming concepts (Muller et al., 2007;

Qian &Lehman 2017; Sajaniemi & Kuittinen, 2005).

www.manaraa.com

78

Feedback for Conceptual Change

Overall Effects of Feedback

The results of this study indicated that targeted feedback messages enhanced students’

improvement rates of erroneous solutions. Students of group 2 (the group receiving targeted

feedback messages) showed significantly higher improvement rates in all erroneous solutions

and solutions with common errors than students of group 1. Within group 2, students also

showed a significantly higher improvement rate in solutions with targeted feedback messages

compared to solutions without targeted feedback messages. All these results suggest that with

targeted feedback messages, students were more likely to correct errors in their code. This

finding is consistent with previous research (Becker et al., 2016).

In the study of Becker et al. (2016), researchers provided feedback for 30 common

compilation errors by enhancing the compiler error messages. They found that the 30

compilation errors accounted for 78% of all errors, and the group receiving feedback messages

made 32% fewer errors than the group only seeing the original Java compiler error messages.

While the study of Becker et al. (2016) only investigated students’ compilation errors, its overall

research approach and results are similar to this study. In this study, targeted feedback messages

were designed and provided for both common compilation and test errors. The data of this study

revealed that the 15 common compilation errors accounted for 92% of all compilation errors. For

the test errors, 54% of them were related to those difficult problems. The 10 common test errors

accounted for 39% of all test errors of the difficult problems. Therefore, one important step of

designing the feedback component of an automated assessment system is to identify the common

errors students make, which are the representatives of common difficulties students encounter in

learning to programming.

In contrast, two recent studies reported conflicting results (Denny et al., 2014; Pettit et

al., 2017). Both studies examined the effects of enhanced compiler error messages and indicated

that no significant effects were found. However, the research design of the two studies was

different from Becker et al.’s (2016) and this study and may account for the lack of significant

results. In the study of Denny et al. (2014), students only had to complete the method body of a

given method header. Hence, students did not have to write a program from scratch and would

not encounter all possible Java compilation errors (Becker et al., 2016). The study of Pettit et al.

www.manaraa.com

79

(2017) also indicated that enhanced compiler error messages did not benefit students. However,

their feedback messages only covered 30% of compilation errors, which may make the effects of

their feedback insignificant. While many factors may contribute to the ineffectiveness of

feedback in the two studies, one key issue is that the feedback messages they offered may not

have addressed the common student errors in their instructional settings. Without a good

identification of common student errors that can account for most student errors, the feedback

system of an automated assessment system may not work as expected. As the visibility model of

feedback suggests, designing effective feedback requires precisely analyzing and understanding

learners’ current knowledge states (Hattie & Gan, 2011; Hattie & Timperley, 2007). If the design

of feedback messages is not based on students’ current knowledge states and only addresses a

limited number of student errors, the feedback may not be as effective as expected.

Evolution of Students’ Misconceptions

The qualitative analysis of students’ solutions of four selected cases noted that when

improving the code, students of group 2 made fewer intermediate incorrect solutions than

students in group 1. In other words, the targeted feedback messages appear to have helped to

promote conceptual change. According to the qualitative analysis, students of group 1 usually

noticed the error but often only fixed part of the error in the next attempted solution (see Figure

4.9b for an example). In contrast, with the targeted feedback message, students of group 2 often

could completely fix the same error in the revised solution (see Figure 4.9a for an example).

According to conceptual change theories (Taber, 2013; Vosniadou, 1994; Vosniadou &

Skopeliti, 2014), before students develop correct understanding of an academic concept, they

may gain certain intermediate states of knowledge because of the conflicts and interactions

between their existing knowledge and the new concept. Such intermediate states of knowledge

are called melded concepts (Taber, 2013) or synthetic models (Vosniadou & Skopeliti, 2014) and

consist of both correct and erroneous knowledge elements (diSessa, 2014). From this viewpoint,

both students of group 1 and 2 formed certain melded concepts, but the targeted feedback

messages might have helped students of group 2 correct the erroneous knowledge elements and

reduce the intermediate states. Conceptual change is an evolutionary process of correcting and

enhancing existing knowledge elements and establishing and refining the relationships among

conceptions (Abimbola, 1988; diSessa, 2013). Therefore, when providing feedback for students,

www.manaraa.com

80

it is important to analyze students’ possible melded concepts and consider their (mis)conceptions

as resources, rather than trying to replace them (Smith et al., 1994).

In addition, the qualitative analysis revealed that quantitative analysis in this study failed

to detect certain improvements in student code, and the targeted feedback messages might have

worked better than the quantitative results suggested. When analyzing the two feedback message

cases with the worst improvement rates, the results showed that the quantitative analysis labeled

some solutions as “not improved” even though the error related to the feedback was fixed

because other errors were still present. This is a limitation of quantitative analysis (Fields et al.,

2016) and also highlights the value of qualitative analysis of student code. Therefore, it is

important to find new techniques or algorithms to improve the accuracy of the quantitative

analysis, because manually conducting qualitative analysis of every student solution is time-

consuming and difficult.

Implications

An effective CS teacher needs to have both knowledge of the subject matter and

pedagogical content knowledge (Hubwieser, Magenheim, Mühling, & Ruf, 2013; Shulman,

1986; Yadav, Berges, Sands, & Good, 2016). Pedagogical content knowledge (PCK) refers to the

knowledge that enables teachers to transform instructional content into a comprehensible form to

students (Shulman, 1986). One key component of teachers’ PCK is their knowledge of students’

misconceptions (Carlsen, 1999; Saeli, Perrenet, Jochems, & Zwaneveld, 2011; Shulman, 1986).

Unfortunately, research on CS teachers’ PCK is limited (Saeli et al., 2011; Yadav et al., 2016),

and CS teachers often lack sufficient understanding of student misconceptions (Brown &

Altadmri, 2017; Guzdial, 2015). CS teachers’ teaching and computing experience sometimes

lead them to form “misconceptions” of common student misconceptions. Further, as experts,

they sometimes ignore the difficulties novice students have (Brown & Altadmri, 2017; Guzdial,

2015). The results of this study suggest a data-driven approach to understanding and addressing

student misconceptions, which is using student data in automated assessment systems, has the

potential to help teachers build a more accurate understanding of their students’ common

misconceptions and develop their PCK.

Automated assessment systems have been widely used in college-level introductory

programming classes (Douce et al., 2005; Pettit et al., 2017). They can not only reduce teachers’

www.manaraa.com

81

grading workload but also collect a large amount of student data including all errors students

make. The student data in automated assessment systems can be a good resource for analyzing

student misconceptions. Previous studies have used such data and catalogued a broad range of

misconceptions of college students (Altadmri & Brown, 2015; Becker, 2016; Denny et al., 2012).

However, college CS1 instructors often have limited knowledge of students’ misconceptions

(Brown & Altadmri, 2017; Spohrer & Soloway, 1986). Hence, it is important for college CS1

instructors to utilize the data in automated assessment systems to understand their students’

common misconceptions. Researchers and developers have already developed a variety of tools

that can identify common student misconceptions using the data in automated assessment

systems (Becker, 2016; Denny et al., 2012). Instead of creating new tools, college CS1

instructors should learn to use existing tools. Meanwhile, researchers and developers should keep

improving their tools. For example, many existing tools do not consider students’ non-

compilation errors, but the results of this study show that non-compilation errors are also

important to understand student misconceptions. Therefore, researchers and developers of

automated assessment systems should develop components that support identifying common

student misconceptions using both compilation and non-compilation errors.

As CS education has been expanding into K-12 schools, CS teachers at the pre-college

level should also learn to use automated assessment systems and student data to understand

student misconceptions. Because students’ misconceptions are contextually sensitive (diSessa,

2013; Özdemir & Clark, 2007), pre-college students in different instructional settings may show

different misconceptions. While the results of this study indicate that secondary school students

make similar common errors to those college students, minor difference still existed, such as the

program name error. Thus, integrating automated assessment systems with misconception

identification components into pre-college introductory programming courses can be helpful and

valuable. However, such systems may not always accessible to CS teachers in K-12 schools.

Some other approaches may also be useful to help teachers understand student misconceptions in

introductory programming. For example, a professional development program with a focus on

common student misconceptions may benefit teachers who have limited knowledge of student

misconceptions (Qian, Hambrusch, Yadav, & Gretter, 2018). The development and use of a

concept inventory is another potential way to help teachers evaluate students’ understanding of

fundamental programming concepts (Goldman et al., 2010; Taylor et al., 2014).

www.manaraa.com

82

In addition to identifying student misconceptions, teachers also need to have the ability to

address misconceptions. Adding a well-designed feedback system to an automated assessment

system can be one good solution. Some researchers have developed and studied the systems that

can offer automatically generated feedback using artificial intelligence techniques (Price et al.,

2017; Rivers & Koedinger, 2017). While such systems seem to be an ideal solution to help

teachers address student misconceptions, they are yet not mature and can only handle simple

programs. According to the results of this study and previous research, the key to provide

effective feedback for addressing student misconceptions is an accurate understanding of

students’ common misconceptions. While students may make a variety of errors in their code, a

small number of common errors account for most student errors. Hence, no matter whether a

feedback system exists, teachers should focus on common student errors and difficult problems

identified by the student data. The ability to effectively identify and address common

misconceptions based on student data will be vital to quality CS teachers.

Limitations and Future Research Directions

While plausible results were found, this study has several limitations. First, the

generalizability of findings from this study is limited. In this study, participants were high-ability

students. Their misconceptions may not be representative of the population of secondary school

students. Further, because the students were participating in a non-school-based summer

enrichment program that was not formally graded, students may not have been motivated to

learn. Hence, future research on ordinary middle and high school students in formal educational

settings is necessary to better understand secondary school students’ common misconceptions. In

addition, as two Advanced Placement (AP) CS courses, AP Computer Science Principles and AP

Computer Science A, have been developed for high-ability high school students, conducting

research on students who take the AP CS courses in formal educational settings is important to

better understand common misconceptions of high-ability students.

In addition, the sample size of this study was relatively small. In this study, group 1 and 2

had only 13 and 10 students respectively. Previous studies on college students often had a sample

of more than 100 students (e.g. Becker, 2016). While this study included students from summer

2016 to obtain a more complete understanding of common student misconceptions, the analysis

of the effects of feedback was limited to the data of the 23 students of summer 2017. Because of

www.manaraa.com

83

the small sample size, certain feedback messages were only triggered a limited number of times.

For example, CFB5 and TFB7 were only triggered once in this study (see Table 4.4 and 4.5).

Thus, with such limited data, the effects of such feedback messages could not be determined.

Future research should use a larger sample to better examine the effects of feedback.

Another limitation is there was no control group in this study. Although the use of a

control group is not typical in design-based studies, without a control group it is not possible to

establish a causal relationship between the observed changes and the intervention. While the

results of this study suggest that with targeted feedback messages students are more likely to

correct errors in their code, without a strictly controlled experiment it is difficult to determine

whether the feedback causes the improvements. Students of the two groups might have

differences in prior knowledge of programming, existing math knowledge, and other factors. It is

possible that there existed certain confounding variables that resulted in the higher improvement

rates of group 2 students, rather than the feedback. Thus, to further investigate the effects of

feedback, it is essential to implement a study with both treatment and control groups by

controlling variables such as students’ gender, previous computing experience, academic

performance in other subjects, and so forth.

The programming problems in Mulberry are also a limitation because they may not

reveal all possible student misconceptions. For example, no problems in Mulberry were related

to the concepts Classes and Objects, which have been shown to be problematic for beginners in

previous studies. Therefore, it is important to expand the problem pool of Mulberry to cover a

broader range of possible concepts that are included in a typical introductory Java programming

course. Further, when Mulberry has more problems that cover more programming concepts, the

course design should be revised and expanded. The course in this study was designed for a two-

week summer camp and only covered a limited number of programming concepts. During the

two weeks, most students could only solve a small number of problems in Mulberry. Certain

common misconceptions may have remained hidden, even though relevant problems were

included in Mulberry. For example, the concept Loops has been shown to be difficult for

novices, but no difficult problems in this study were related to Loops, because only a few

students in this study solved problems related to Loops. Hence, both the problem pool of

Mulberry and the course time should be expanded to cover more programming concepts so that

future research may be able to reveal additional student misconceptions.

www.manaraa.com

84

Another limitation of this study is that the categorization of “improved” and “not

improved” student solutions may not accurately reflect student performance. According to the

qualitative analysis of student programs, certain improvements in students’ code, such as fixing a

common error, were not detected by the categorization algorithm used in this study. Hence,

future research is needed to see if a more accurate categorization algorithm can be developed.

For example, machine learning techniques might be implemented to analyze student code

directly to identify improvements.

Finally, the results of this study also provide potential directions for future studies on

student misconceptions in introductory programming. One key feature of this study was the use

of students’ non-compilation errors. The results indicate the importance and value of these non-

compilation errors in understanding student misconceptions. Hence, future research should pay

more attention to students’ non-compilation errors and examine possible ways to reveal and

analyze various kinds of non-compilation errors, such as logic errors, run-time errors, and so on.

Furthermore, many factors may affect the effectiveness of feedback, such as students’

confidence, the difficulty of the problem, time of reading the feedback, and so on. Future

research should investigate the impacts of these variables on the effectiveness of the feedback.

As natural language may interfere with the learning of programming, future research should

examine common misconceptions related to language. For example, the performance of non-

English speakers might be compared to native English speakers to see whether they show the

same misconceptions and how their English ability impacts their learning of programming.

Conclusions

With the expansion of computer science education, CS teachers in K-12 schools should

be cognizant of student misconceptions and be prepared to help students establish accurate

understanding of computer science and programming. This exploratory design-based research

study implemented a data-driven approach to identify secondary school students’ misconceptions

and provide targeted feedback to promote students’ conceptual change in introductory

programming. A total of 15 common compilation errors and 10 common test errors were

identified in this study. The results showed that these common errors accounted for a large

proportion of all errors. The results suggest that identifying common errors, both compilation

and test errors, is important to teach introductory programming courses. Based on these common

www.manaraa.com

85

errors, seven underlying student misconceptions were identified. A variety of factors that may

contribute to the misconceptions were discussed, including students’ deficient programming

knowledge, prior math knowledge, everyday experience, and lack of strategic knowledge.

Possible instructional strategies to address these student misconceptions were also discussed.

Based on students’ common errors and underlying misconceptions, targeted feedback

messages were designed and provided for students. The quantitative analysis found that with

targeted feedback students were more likely to correct the errors in their code. The qualitative

analysis of students’ solutions revealed that when improving the code, students receiving

feedback made fewer intermediate incorrect solutions. In other words, the targeted feedback

messages may help to promote conceptual change. The results suggest that designing effective

feedback for promoting conceptual change requires precisely analyzing students’ current

(mis)conceptions. Hence, this study proposes a data-driven approach to understand and address

student misconceptions, which is using student data in automated assessment systems, to both

improve student learning of programming and help teachers build accurate understanding of their

students’ common misconceptions and develop their PCK. Researchers and developers of

automated assessment systems should develop components that support identifying common

student misconceptions using both compilation and non-compilation errors. No matter whether

the automated assessment system has a feedback system, teachers should utilize common student

errors and difficult problems identified by the student data to support and improve their

instruction.

These days, computer science education is expanding quickly, but research on CS

teachers’ PCK is limited. Digital tools, such as automated assessment systems, definitely can be

useful and supportive in teaching CS courses. The findings of this exploratory study showed

evidence of the power of digital tools. However, more research is needed to make technology

benefit more CS teachers. One issue of this study is that the current quantitative analysis method

used in this study may miss certain improvements in students’ code. The next step of research

should focus on finding more accurate analysis methods to analyze students’ improvements in

coding.

www.manaraa.com

86

REFERENCES

Abimbola, I. O. (1988). The problem of terminology in the study of student conceptions in

science. Science Education, 72(2), 175–184. https://doi.org/10.1002/sce.3730720206

Altadmri, A., & Brown, N. C. C. (2015). 37 million compilations: Investigating novice

programming mistakes in large-scale student data. In Proceedings of the 46th ACM

Technical Symposium on Computer Science Education (pp. 522–527). New York, New

York, USA: ACM Press. https://doi.org/10.1145/2676723.2677258

Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985). Intelligent tutoring systems. Science,

228(4698), 456–462. https://doi.org/10.1126/science.228.4698.456

Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education

research? Educational Researcher, 41(1), 16–25.

https://doi.org/10.3102/0013189X11428813

Ausubel, D. P. (2000). The acquisition and retention of knowledge: A cognitive view. Dordrecht,

The Netherlands: Kluwer Academic Publishers.

Azevedo, R., & Bernard, R. M. (1995). A meta-analysis of the effects of feedback in computer-

based instruction. Journal of Educational Computing Research, 13(2), 111–127.

Balzer, W. K., Doherty, M. E., & O’Connor, R. (1989). Effects of cognitive feedback on

performance. Psychological Bulletin. https://doi.org/10.1037/0033-2909.106.3.410

Bangert-Drowns, R. L., Kulik, C. L. C., Kulik, J. A., & Morgan, M. (1991). The instructional

effect of feedback in test-like events. Review of Educational Research, 61(2), 213–238.

https://doi.org/10.3102/00346543061002213

Barnes, T., & Stamper, J. (2010). Automatic hint generation for logic proof tutoring using

historical data. Educational Technology and Society, 13(1), 3–12.

Bayman, P., & Mayer, R. E. (1988). Using conceptual models to teach BASIC computer

programming. Journal of Educational Psychology, 80(3), 291–298.

https://doi.org/10.1037/0022-0663.80.3.291

Becker, B. A. (2016). An effective approach to enhancing compiler error messages. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education -

SIGCSE ’16 (pp. 126–131). https://doi.org/10.1145/2839509.2844584

www.manaraa.com

87

Becker, B. A., Glanville, G., Iwashima, R., McDonnell, C., Goslin, K., & Mooney, C. (2016).

Effective compiler error message enhancement for novice programming students. Computer

Science Education, 26(2–3), 148–175. https://doi.org/10.1080/08993408.2016.1225464

Bell, T., Andreae, P., & Robins, A. (2014). A case study of the introduction of computer science

in NZ schools. ACM Transactions on Computing Education, 14(2), 1–31.

https://doi.org/10.1145/2602485

Ben-David Kolikant, Y., & Mussai, M. (2008). “So my program doesn’t run!” Definition,

origins, and practical expressions of students’ (mis)conceptions of correctness. Computer

Science Education, 18(2), 135–151. https://doi.org/10.1080/08993400802156400

Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A major source of

misconceptions in novice programmers. Human-Computer Interaction, 1(2), 133–161.

https://doi.org/10.1207/s15327051hci0102_3

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating

complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2),

141-178.

Brown, N. C. C., & Altadmri, A. (2017). Novice java programming mistakes: Large-scale data

vs. educator beliefs. ACM Transactions on Computing Education, 17(2), 7:1--7:21.

https://doi.org/10.1145/2994154

Brown, N. C. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of

computer science in uk schools. ACM Transactions on Computing Education, 14(2), 1–22.

https://doi.org/10.1145/2602484

Bruckman, A., & Edwards, E. (1999). Should we leverage natural-language knowledge? An

analysis of user errors in a natural-language-style programming language. In ACM (Ed.),

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems- CHI ’99

(pp. 207–214). New York, NY, USA. https://doi.org/10.1145/302979.303040

Butler, A. C., Karpicke, J. D., & Roediger, H. L. (2007). The effect of type and timing of

feedback on learning from multiple-choice tests. Journal of Experimental Psychology:

Applied, 13(4), 273–281. https://doi.org/10.1037/1076-898X.13.4.273

Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical

synthesis. Review of Educational Research, 65(3), 245–281.

https://doi.org/10.3102/00346543065003245

www.manaraa.com

88

Carlsen, W. (1999). Domains of teacher knowledge. In J. Gess-Newsome & N. G. Lederman

(Eds.), Examining pedagogical content knowledge: The construct and its implications for

science education (pp. 133–144). Kluwer Academic Publishers.

Clancy, M. J. (2004). Misconceptions and attitudes that interfere with learning to program. In S.

Fincher & M. Petre (Eds.), Computer Science Education Research (pp. 85–100). London,

UK: Taylor & Francis Group.

Clancy, M. J., & Linn, M. C. (1999). Patterns and pedagogy. ACM SIGCSE Bulletin, 31(1), 37–

42. https://doi.org/10.1145/384266.299673

Clariana, R. B., Wagner, D., & Murphy, L. C. R. (2000). Applying a connectionist description of

feedback timing. Educational Technology Research and Development, 48(3), 5–22.

https://doi.org/10.1007/BF02319855

Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’

preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241–1257.

https://doi.org/10.1002/tea.3660301007

Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring:

Impact on learning rate, achievement and attitudes. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems - CHI ’01 (pp. 245–252). New York,

NY, USA: ACM Press. https://doi.org/10.1145/365024.365111

Dann, W., Cosgrove, D., Slater, D., Culyba, D., & Cooper, S. (2012). Mediated transfer: Alice 3

to java. In Proceedings of the 43rd ACM Technical Symposium on Computer Science

Education (pp. 141–146). New York, NY, USA: ACM.

https://doi.org/10.1145/2157136.2157180

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of

Man-Machine Studies, 39(2), 237–267. https://doi.org/10.1006/imms.1993.1061

De-La-Fuente-Valentín, L., Pardo, A., & Delgado Kloos, C. (2013). Addressing drop-out and

sustained effort issues with large practical groups using an automated delivery and

assessment system. Computers and Education, 61(1), 33–42.

https://doi.org/10.1016/j.compedu.2012.09.004

de Raadt, M. (2008). Teaching programming strategies explicitly to novice programmers.

Doctoral dissertation, University of Southern Queensland.

www.manaraa.com

89

Dempsey, J. V., Driscoll, M. P., & Swindell, L. K. (1993). Text-based feedback. In J. V.

Dempsey & G. C. Sales (Eds.), Interactive Instruction and Feedback (pp. 21–54).

Englewood Cliffs, NJ: Educational Technology Publications.

Denny, P., Luxton-Reilly, A., & Carpenter, D. (2014). Enhancing syntax error messages appears

ineffectual. Proceedings of the 19th ACM Conference on Innovation & Technology in

Computer Science Education, 273–278. https://doi.org/10.1145/2591708.2591748

Denny, P., Luxton-Reilly, A., & Tempero, E. (2012). All syntax errors are not equal.

Proceedings of the 17th ACM Annual Conference on Innovation and Technology in

Computer Science Education - ITiCSE ’12, 75–80.

https://doi.org/10.1145/2325296.2325318

desJardins, M. (2015). Creating AP® CS principles: Let many flowers bloom. ACM Inroads,

6(4), 60–66. https://doi.org/10.1145/2835852

diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3),

105–225. https://doi.org/10.1080/07370008.1985.9649008

diSessa, A. A. (2013). A bird’s-eye view of the “pieces” vs “coherence” controversy (from the

“pieces” side of the fence). In S. Vosniadou (Ed.), International Handbook of Research on

Conceptual Change (pp. 31–48). New York, NY: Taylor and Francis.

diSessa, A. A. (2014). The construction of causal schemes: Learning mechanisms at the

knowledge level. Cognitive Science, 38(5), 795–850. https://doi.org/10.1111/cogs.12131

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of

programming. Journal on Educational Resources in Computing, 5(3), 4:1-13.

https://doi.org/10.1145/1163405.1163409

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1), 57–73. https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving

science teaching and learning. International Journal of Science Education, 25(6), 671–688.

https://doi.org/10.1080/09500690305016

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan composition.

International Journal of Human - Computer Studies, 41(4), 457–480.

https://doi.org/10.1006/ijhc.1994.1069

www.manaraa.com

90

Fields, D. A., Quirke, L., Amely, J., & Maughan, J. (2016). Combining big data and thick data

analyses for understanding youth learning trajectories in a summer coding camp. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp.

150–155). New York, NY, USA: ACM. https://doi.org/10.1145/2839509.2844631

Fisler, K., Krishnamurthi, S., & Siegmund, J. (2016). Modernizing plan-composition studies. In

Proceedings of the 47th ACM Technical Symposium on Computing Science Education -

SIGCSE ’16 (pp. 211–216). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2839509.2844556

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., & Zander,

C. (2008). Debugging: finding, fixing and flailing, a multi-institutional study of novice

debuggers. Computer Science Education, 18(2), 93–116.

https://doi.org/10.1080/08993400802114508

Gerdes, A., Heeren, B., Jeuring, J., & van Binsbergen, L. T. (2017). Ask-Elle: an Adaptable

Programming Tutor for Haskell Giving Automated Feedback. International Journal of

Artificial Intelligence in Education, 27(1), 65–100. https://doi.org/10.1007/s40593-015-

0080-x

GERI Website. (2018). GERI Summer Residential Program. Retrieved March 15, 2018, from

https://www.education.purdue.edu/geri/youth-programs/summer-residential/

Gielen, S., Peeters, E., Dochy, F., Onghena, P., & Struyven, K. (2010). Improving the

effectiveness of peer feedback for learning. Learning and Instruction, 20(4), 304–315.

https://doi.org/10.1016/j.learninstruc.2009.08.007

Gilman, D. A. (1969). Comparison of several feedback methods for correcting errors by

computer-assisted instruction. Journal of Educational Psychology, 60(6), 503–508.

https://doi.org/10.1037/h0028501

Ginat, D., Shifroni, E., & Menashe, E. (2011). Transfer, cognitive load, and program design

difficulties. In I. Kalaš & R. T. Mittermeir (Eds.), Informatics in Schools. Contributing to

21st Century Education (pp. 165–176). Berlin, Heidelberg: Springer Berlin Heidelberg.

Goldman, K., Gross, P., Heeren, C., Herman, G. L., Kaczmarczyk, L., Loui, M. C., & Zilles, C.

(2010). Setting the scope of concept inventories for introductory computing subjects. ACM

Transactions on Computing Education, 10(2), 1–29.

https://doi.org/10.1145/1789934.1789935

www.manaraa.com

91

Guo, P. J. (2013). Online python tutor: Embeddable web-based program visualization for cs

education. SIGCSE 2013 - Proceedings of the 44th ACM Technical Symposium on

Computer Science Education, 579–584. https://doi.org/10.1145/2445196.2445368

Guzdial, M. (1995). Centralized mindset: A student problem with object-oriented programming.

ACM SIGCSE Bulletin, 27(1), 182–185. https://doi.org/10.1145/199691.199772

Guzdial, M. (2015). Learner-centered design of computing education: research on computing for

everyone. Synthesis Lectures on Human-Centered Informatics, 8(6), 1–165.

https://doi.org/10.2200/S00684ED1V01Y201511HCI033

Hattie, J., & Gan, M. (2011). Instruction based on feedback. In R. E. Mayer & P. A. Alexander

(Eds.), Handbook of Research on Learning and Instruction (pp. 249–271). New York, NY:

Routledge.

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research,

77(1), 81–112. https://doi.org/10.3102/003465430298487

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. ACM

SIGCSE Bulletin, 29(1), 131–134. https://doi.org/10.1145/268085.268132

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting Java

programming errors for introductory computer science students. In Proceedings of the 34th

SIGCSE Technical Symposium on Computer Science Education (pp. 153–156). New York,

NY, USA: ACM. https://doi.org/10.1145/611892.611956

Hubwieser, P., Magenheim, J., Mühling, A., & Ruf, A. (2013). Towards a conceptualization of

pedagogical content knowledge for computer science. Proceedings of the Ninth Annual

International ACM Conference on International Computing Education Research -

ICER ’13, 1–8. https://doi.org/10.1145/2493394.2493395

Jackson, J., Cobb, M., & Carver, C. (2005). Identifying top Java errors for novice programmers.

In Proceedings Frontiers in Education 35th Annual Conference (p. T4C–T4C).

https://doi.org/10.1109/FIE.2005.1611967

Jaehnig, W., & Miller, M. L. (2007). Feedback types in programmed instruction: A systematic

review. The Psychological Record, 57(2), 219–232. https://doi.org/10.1007/BF03395573

Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical

paradigm? Educational Technology Research and Development, 39(3), 5–14.

https://doi.org/10.1007/BF02296434

www.manaraa.com

92

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying student

misconceptions of programming. In Proceedings of the 41st ACM Technical Symposium on

Computer Science Education (pp. 107–111). New York, NY, USA: ACM.

https://doi.org/10.1145/1734263.1734299

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing

Surveys (CSUR), 37(2), 83–137. https://doi.org/10.1145/1089733.1089734

Klopfer, L. E., Champagne, A. B., & Gunstone, R. F. (1983). Naive knowledge and science

learning. Research in Science & Technological Education, 1(2), 173–183.

https://doi.org/10.1080/0263514830010205

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A

historical review, a meta-analysis, and a preliminary feedback intervention theory.

Psychological Bulletin, 119(2), 254–284.

Ko, A. J., & Myers, B. A. (2005). A framework and methodology for studying the causes of

software errors in programming systems. Journal of Visual Languages & Computing, 16(1–

2), 41–84. https://doi.org/10.1016/J.JVLC.2004.08.003

Kölling, M. (2010). The Greenfoot programming environment. ACM Transactions on Computing

Education, 10(4), 1–21. https://doi.org/10.1145/1868358.1868361

Krathwohl, D. R. (2002). A revision of bloom’s taxonomy: An overview. Theory Into Practice,

41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2

Kulhavy, R. W. (1977). Feedback in written instruction. Review of Educational Research, 47(2),

211–232. https://doi.org/10.3102/00346543047002211

Kulhavy, R. W., & Anderson, R. C. (1972). Delay-retention effect with multiple-choice tests.

Journal of Educational Psychology, 63(5), 505–512. https://doi.org/10.1037/h0033243

Kulhavy, R. W., & Stock, W. A. (1989). Feedback in written instruction: The place of response

certitude. Educational Psychology Review, 1(4), 279–308.

https://doi.org/10.1007/BF01320096

Kulhavy, R. W., & Wager, W. (1993). Feedback in programmed instruction: Historical context

and implications for practice. In J. V. Dempsey & G. C. Sales (Eds.), Interactive Instruction

and Feedback (pp. 3–20). Englewood Cliffs, NJ: Educational Technology Publications.

www.manaraa.com

93

Kulik, J. A., & Kulik, C. L. C. (1988). Timing of feedback and verbal learning. Review of

Educational Research, 58(1), 79–97. https://doi.org/10.3102/00346543058001079

Lee, O. M. (1985). The effect of type of feedback on rule learning in computer based instruction.

Doctoral dissertation, Florida State University.

Li, L., Liu, X., & Steckelberg, A. L. (2010). Assessor or assessee: How student learning

improves by giving and receiving peer feedback. British Journal of Educational

Technology, 41(3), 525–536. https://doi.org/10.1111/j.1467-8535.2009.00968.x

Lister, R. (2011). Concrete and other neo-Piagetian forms of reasoning in the novice

programmer. In Proceedings of the Thirteenth Australasian Computing Education

Conference - Volume 114 (pp. 9–18). Darlinghurst, Australia, Australia: Australian

Computer Society, Inc. Retrieved from http://dl.acm.org/citation.cfm?id=2459936.2459938

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest

for the trees: novice programmers and the SOLO taxonomy. In Proceedings of the 11th

annual SIGCSE conference on Innovation and technology in computer science education -

ITICSE ’06 (Vol. 38, pp. 118–122). New York, New York, USA: ACM Press.

https://doi.org/10.1145/1140124.1140157

Liu, N.-F., & Carless, D. (2006). Peer feedback: the learning element of peer assessment.

Teaching in Higher Education, 11(3), 279–290.

https://doi.org/10.1080/13562510600680582

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing

and writing skills in introductory programming. In Proceedings of the Fourth International

Workshop on Computing Education Research (pp. 101–112). New York, NY, USA: ACM.

https://doi.org/10.1145/1404520.1404531

Lu, J., & Law, N. (2012). Online peer assessment: Effects of cognitive and affective feedback.

Instructional Science, 40(2), 257–275. https://doi.org/10.1007/s11251-011-9177-2

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander,

C. (2008). Debugging: a review of the literature from an educational perspective. Computer

Science Education, 18(2), 67–92. https://doi.org/10.1080/08993400802114581

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., … Utting, I.

(2001). A multi-national, multi-institutional study of assessment of programming skills of

www.manaraa.com

94

first-year CS students. ACM SIGCSE Bulletin, 33(4), 125.

https://doi.org/10.1145/572139.572181

McKenney, S., & Reeves, T. C. (2014). Educational design research. In D. Jonassen, M. J.

Spector, M. Driscoll, M. D. Merrill, J. van Merrienboer, & M. P. Driscoll (Eds.), Handbook

of Research on Educational Communications and Technology (pp. 131–140). New York,

NY: Springer.

Merrill, D. C., Reiser, B. J., Ranney, M., & Trafton, J. G. (1992). Effective tutoring techniques:

A comparison of human tutors and intelligent tutoring systems. The Journal of the Learning

Sciences, 2(3), 277–305. https://doi.org/10.1207/s15327809jls0203_2

Miller, C. S. (2014). Metonymy and reference-point errors in novice programming. Computer

Science Education, 24(2–3), 123–152. https://doi.org/10.1080/08993408.2014.952500

Moos, D. C. (2011). Self-regulated learning and externally generated feedback with hypermedia.

Journal of Educational Computing Research, 44(3), 265–297.

https://doi.org/10.2190/EC.44.3.b

Mory, E. (2004). Feedback research revisited. In D. Jonassen (Ed.), Handbook of Research on

Educational Communications and Technology Vol 2 (pp. 745–783). Mahwah, NJ: Lawrence

Erlbaum Associates Publishers.

Muller, O. (2005). Pattern oriented instruction and the enhancement of analogical reasoning. In

Proceedings of the First International Workshop on Computing Education Research (pp.

57–67). New York, NY, USA: ACM. https://doi.org/10.1145/1089786.1089792

Muller, O., Ginat, D., & Haberman, B. (2007). Pattern-oriented instruction and its influence on

problem decomposition and solution construction. In Proceedings of the 12th Annual

SIGCSE Conference on Innovation and Technology in Computer Science Education (pp.

151–155). New York, NY, USA: ACM. https://doi.org/10.1145/1268784.1268830

Nelson, M. M., & Schunn, C. D. (2009). The nature of feedback: How different types of peer

feedback affect writing performance. Instructional Science, 37(4), 375–401.

https://doi.org/10.1007/s11251-008-9053-x

Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self‐regulated learning: A

model and seven principles of good feedback practice. Studies in Higher Education, 31(2),

199–218. https://doi.org/10.1080/03075070600572090

www.manaraa.com

95

Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia

Journal of Mathematics Science Technology Education, 3(4), 351–361.

https://doi.org/10.12973/ejmste/75414

Patchan, M. M., & Schunn, C. D. (2015). Understanding the benefits of providing peer feedback:

how students respond to peers’ texts of varying quality. Instructional Science, 43(5), 591–

614. https://doi.org/10.1007/s11251-015-9353-x

Pea, R. D. (1986). Language-independent conceptual “bugs” in novice programming. Journal of

Educational Computing Research, 2(1), 25–36. https://doi.org/10.2190/689T-1R2A-X4W4-

29J2

Pettit, R. S., Homer, J., & Gee, R. (2017). Do enhanced compiler error messages help students?

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education - SIGCSE ’17, 465–470. https://doi.org/10.1145/3017680.3017768

Porter, L., Lee, C. B., & Simon, B. (2013). Halving fail rates using peer instruction: a study of

four computer science courses. In Proceeding of the 44th ACM Technical Symposium on

Computer Science Education (pp. 177–182). New York, NY, USA: ACM.

https://doi.org/10.1145/2445196.2445250

Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a

scientific conception: Toward a theory of conceptual change. Science Education, 66(2),

211–227. https://doi.org/10.1002/sce.3730660207

Price, T. W., & Barnes, T. (2015). Comparing textual and block interfaces in a novice

programming environment. In Proceedings of the Eleventh Annual International

Conference on International Computing Education Research (pp. 91–99). New York, NY,

USA: ACM. https://doi.org/10.1145/2787622.2787712

Price, T. W., Dong, Y., & Lipovac, D. (2017). iSnap: Towards intelligent tutoring in novice

programming environments. In Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education - SIGCSE ’17 (pp. 483–488). New York, NY,

USA: ACM Press. https://doi.org/10.1145/3017680.3017762

Qian, Y., Hambrusch, S., Yadav, A., & Gretter, S. (2018). Who needs what: Recommendations

for designing effective online professional development for computer science teachers.

Journal of Research on Technology in Education, 50(2), 164–181.

https://doi.org/10.1080/15391523.2018.1433565

www.manaraa.com

96

Qian, Y., & Lehman, J. (2017). Students’ misconceptions and other difficulties in introductory

programming: A literature review. ACM Transactions on Computing Education, 18(1), 1:1-

1:24. https://doi.org/10.1145/3077618

Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the comprehension of OOP

concepts by novices. Computer Science Education, 15(3), 203–221.

https://doi.org/10.1080/08993400500224310

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., …

Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–

67. https://doi.org/10.1145/1592761.1592779

Rivers, K., & Koedinger, K. R. (2017). Data-driven hint generation in vast solution spaces: A

self-improving Python programming tutor. International Journal of Artificial Intelligence in

Education, 27(1), 37–64. https://doi.org/10.1007/s40593-015-0070-z

Robins, A., Haden, P., & Garner, S. (2006). Problem distributions in a CS1 course. In

Proceedings of the 8th Australasian Conference on Computing Education - Volume 52 (pp.

165–173). Darlinghurst, Australia, Australia: Australian Computer Society, Inc. Retrieved

from http://dl.acm.org/citation.cfm?id=1151869.1151891

Sadler, D. R. (1989). Formative assessment and the design of instructional systems. Instructional

Science, 18(2), 119–144. https://doi.org/10.1007/BF00117714

Saeli, M., Perrenet, J., Jochems, W. M. G., & Zwaneveld, B. (2011). Teaching programming in

secondary school: A pedagogical content knowledge perspective. Informatics in Education,

10(1), 73–88. Retrieved from

https://search.proquest.com/docview/864687645?accountid=13360

Sajaniemi, J., & Kuittinen, M. (2005). An experiment on using roles of variables in teaching

introductory programming. Computer Science Education, 15(1), 59–82.

https://doi.org/10.1080/08993400500056563

Sajaniemi, J., & Prieto, R. N. (2005). Roles of variables in experts’ programming knowledge. In

Proceedings of the 17th Annual Workshop of the Psychology of Programming Interest

Group (pp. 145–159). Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Roles+of+Variables+in+

Experts+’+Programming+Knowledge#0

www.manaraa.com

97

Sanders, K., & Thomas, L. (2007). Checklists for grading object-oriented CS1 programs:

concepts and misconceptions. ACM SIGCSE Bulletin, 39(3), 166–170.

https://doi.org/10.1145/1269900.1268834

Schroth, M. L. (1992). The effects of delay of feedback on a delayed concept formation transfer

task. Contemporary Educational Psychology, 17(1), 78–82. https://doi.org/10.1016/0361-

476X(92)90048-4

Shulman, L. (1986). Those who understand: knowdge growth in teaching. Educational

Researcher, 15(2), 4–14.

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–

189. https://doi.org/10.3102/0034654307313795

Simon. (2011). Assignment and sequence: why some students can’t recognise a simple swap. In

Proceedings of the 11th Koli Calling International Conference on Computing Education

Research (pp. 10–15). New York, NY, USA: ACM.

https://doi.org/10.1145/2094131.2094134

Simon, B., Kohanfars, M., Lee, J., Tamayo, K., & Cutts, Q. (2010). Experience report: peer

instruction in introductory computing. In Proceedings of the 41st ACM Technical

Symposium on Computer Science Education (pp. 341–345). New York, NY, USA: ACM.

https://doi.org/10.1145/1734263.1734381

Sirkia, T., & Sorva, J. (2012). Exploring programming misconceptions: An analysis of student

mistakes in visual program simulation exercises. In 12th Koli Calling International

Conference on Computing Education Research (pp. 19–28).

https://doi.org/10.1145/2401796.2401799

Sleeman, D., Kelly, A. E., Martinak, R., Ward, R. D., & Moore, J. L. (1989). Studies of

diagnosis and remediation with high school algebra students. Cognitive Science, 13(4), 551–

568. https://doi.org/10.1016/0364-0213(89)90023-2

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1986). Pascal and High School Students: A

Study of Errors. Journal of Educational Computing Research, 2(1), 5–23.

https://doi.org/10.2190/2XPP-LTYH-98NQ-BU77

Smith, J. P., diSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A

constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2),

115–163. https://doi.org/10.1207/s15327809jls0302_1

www.manaraa.com

98

Smith, S., & Sherwood, B. (1976). Educational uses of the PLATO computer system. Science,

192(4237), 344–352. https://doi.org/10.1126/science.769165

Soloway, E. (1986). Learning to program = learning to construct mechanisms and explanations.

Communications of the ACM, 29(9), 850–858. https://doi.org/10.1145/6592.6594

Sorva, J. (2012). Visual program simulation in introductory programming education. Doctoral

dissertation, Aalto University, Espoo, Finland.

Sorva, J. (2013). Notional machines and introductory programming education. ACM

Transactions on Computing Education, 13(2), 1–31.

https://doi.org/10.1145/2483710.2483713

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems

for introductory programming education. ACM Transactions on Computing Education,

13(4), 1–64. https://doi.org/10.1145/2490822

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: are the folk wisdoms correct?

Communications of the ACM, 29(7), 624–632. https://doi.org/10.1145/6138.6145

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive

Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7

Taber, K. S. (2013). Modeling learners and learning in science education. New York: Springer.

Taber, K. S. (2014). Alternative Conceptions/Frameworks/Misconceptions. In R. Gunstone

(Ed.), Encyclopedia of Science Education (pp. 1–5). Dordrecht: Springer Netherlands.

https://doi.org/10.1007/978-94-007-6165-0_88-2

Taylor, C., Zingaro, D., Porter, L., Webb, K. C., Lee, C. B., & Clancy, M. (2014). Computer

science concept inventories: past and future. Computer Science Education, 24(4), 253–276.

https://doi.org/10.1080/08993408.2014.970779

Teague, D., & Lister, R. (2014). Programming: reading, writing and reversing. In Proceedings of

the 2014 Conference on Innovation & Technology in Computer Science Education (pp.

285–290). New York, NY, USA: ACM. https://doi.org/10.1145/2591708.2591712

Tew, A. E. (2010). Assessing fundamental introductory computing concept knowledge in a

language independent manner. Doctoral dissertation, Georgia Institute of Technology,

Atlanta, GA, USA.

www.manaraa.com

99

Ulloa, M. (1980). Teaching and learning computer programming: A survey of student problems,

teaching methods, and automated instructional tools. ACM SIGCSE Bulletin, 12(2), 48–64.

https://doi.org/10.1145/989253.989263

Vainio, V., & Sajaniemi, J. (2007). Factors in novice programmers’ poor tracing skills. ACM

SIGCSE Bulletin, 39(3), 236–240. https://doi.org/10.1145/1269900.1268853

Van der Kleij, F. M., Feskens, R. C. W., & Eggen, T. J. H. M. (2015). Effects of feedback in a

computer-based learning environment on students’ learning outcomes: A meta-analysis.

Review of Educational Research, 85(4), 475–511.

https://doi.org/10.3102/0034654314564881

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems,

and other tutoring systems. Educational Psychologist.

https://doi.org/10.1080/00461520.2011.611369

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rosé, C. P. (2007). When

are tutorial dialogues more effective than reading? Cognitive Science, 31(1), 3–62.

https://doi.org/10.1080/03640210709336984

Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and

Instruction, 4(1), 45–69. https://doi.org/10.1016/0959-4752(94)90018-3

Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory

approach. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual

Change (pp. 11–30). New York, NY: Taylor and Francis.

Vosniadou, S., & Skopeliti, I. (2014). Conceptual change from the framework theory side of the

fence. Science & Education, 23(7), 1427–1445. https://doi.org/10.1007/s11191-013-9640-3

Webb, M., Davis, N., Bell, T., Katz, Y., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017).

Computer science in K-12 school curricula of the 2lst century: Why, what and when?

Education and Information Technologies, 22(2), 445–468. https://doi.org/10.1007/s10639-

016-9493-x

Weintrop, D., & Wilensky, U. (2015). Using commutative assessments to compare conceptual

understanding in blocks-based and text-based programs. In Proceedings of the Eleventh

Annual International Conference on International Computing Education Research (pp.

101–110). New York, NY, USA: ACM. https://doi.org/10.1145/2787622.2787721

www.manaraa.com

100

Wentling, T. L. (1973). Mastery versus nonmastery instruction with varying test item feedback

treatments. Journal of Educational Psychology, 65(1), 50–58.

https://doi.org/10.1037/h0034820

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Kumar, P. K. A., & Prasad, C.

(2006). An Australasian study of reading and comprehension skills in novice programmers,

using the bloom and SOLO taxonomies. In Proceedings of the 8th Australasian Conference

on Computing Education - Volume 52 (pp. 243–252). Darlinghurst, Australia, Australia:

Australian Computer Society, Inc. Retrieved from

http://dl.acm.org/citation.cfm?id=1151869.1151901

Xu, S., & Chee, Y. S. (2003). Transformation-based diagnosis of student programs for

programming tutoring systems. IEEE Transactions on Software Engineering, 29(4), 360–

384. https://doi.org/10.1109/TSE.2003.1191799

Yadav, A., Berges, M., Sands, P., & Good, J. (2016). Measuring computer science pedagogical

content knowledge: An exploratory analysis of teaching vignettes to measure teacher

knowledge. Proceedings of the 11th Workshop in Primary and Secondary Computing

Education, (October), 92–95. https://doi.org/10.1145/2978249.2978264

Yang, M., Badger, R., & Yu, Z. (2006). A comparative study of peer and teacher feedback in a

Chinese EFL writing class. Journal of Second Language Writing, 15(3), 179–200.

https://doi.org/10.1016/j.jslw.2006.09.004

www.manaraa.com

101

APPENDIX A. COURSE SYLLABUS

Programming and Computational Thinking
Summer Residential Syllabus

Teacher: Yizhou Qian

Goal:

This course will help students learn the fundamental syntax of Java programming.

Meanwhile, this course focuses on the development of students’ computational thinking, which

is the skill of the 21st century. After receiving this course, students at least will able to design

programs to solve simple problems, such as some math problems which are difficult to solve by

hand. In addition, the course is a good preparation of AP CS A course.

Teaching Methods:

• Project-based

Students will learn Java through completing an individual project. Every student needs to

design a game and after finishing this game, they could master most of the syntax of

programming. Then they will start a team project according to their interest and programming

ability.

• Learning scaffolding by technology-based learning environment

A learning support system to help students practice their programming skill will be used.

This system is game-based designed. When they complete the learning tasks in the system,

students not only improve their programming skill, but also the computational thinking.

Week 1
Day / Date Topic

Day 1 ➢ Introduction about the course

➢ Build your first program

Day 2 ➢ Introduction to Java Programming

➢ Variables

➢ Operators & Operations

➢ Free Practice

Day 3 ➢ Review the learned content

➢ Conditionals (If Statements)

➢ Free Practice

Day 4 ➢ Review the learned content

➢ Loops (While Loop)

➢ Free Practice

Day 5 ➢ Review the learned content

➢ Loops (For Loop)

➢ Free Practice

www.manaraa.com

102

Week 2
Day Topic

Day 6 ➢ Review the learned content

➢ Introduce and Work on the Individual Project

Day 7 ➢ Work on the Individual Project

➢ Presentations

Day 8 ➢ Introduce and Work on the Secret Message Project

➢ Free Practice

Day 9 ➢ Introduce and Work on Final Project - Gladiator

➢ Test Final Projects

Day 10 ➢ Revise Final Projects

➢ Gladiator Fights

➢ Course Review

www.manaraa.com

103

APPENDIX B. FEEDBACK MESSAGES

Feedback for Common Compilation Errors

Feedback Message Relevant Error

CFB1 You may have mismatched or missing braces {},

quotation marks "", parens (), or brackets [] in

your code. Make sure you have them in pairs.

CE4: class expected

CE5: reached end of file

CE7:) expected

CE9: identifier expected

CFB2 You may have typos, code in wrong place, or

incomplete code in your program. Make sure you

use and spell variables and statements correctly.

CE1: cannot find symbol

CE6: not a statement

CE8: illegal start of expression

CE13: illegal start of type

CFB3 You may miss semicolon ; somewhere in your

code. Check if you use semicolon ; appropriately.

CE2: ; expected

CFB4 The name of your program is wrong! CE3: program name error

CFB5 The type of a variable has to match its value.

Your program may have mismatched type and

value of variables. The following code provides an

example of this error:
// Try to assign String to int
int a = in.nextLine();
// Try to assign int to String
String b = in.nextInt();

CE10: incompatible types

CFB6 A variable can only be defined once. Your

program may define a variable twice. The

following code provides an example of this error:
// Define variables
int a = 10;
int b = 20;
// Try to define the variable a again
int a = b + 30;

CE11: variable is already

defined

CFB7 You may use operator(s) in a wrong way! CE12: incorrect use of operators

CFB8 You may try to assign a double value to an int

variable. This leads to a possible loss of precision.

The following code provides an example of this

error:
double pi = 3.14;
// assign double to int
int b = 2 * 2 * pi;

CE15: possible loss of precision

www.manaraa.com

104

Feedback for Common Test Errors

Feedback Message Relevant Error

TFB1 The user may enter a number such as 2.3. Your

program has to read a double instead of an int.

The following code may help you solve your

problem:
Scanner in = new Scanner(System.in);
double radius = in.nextDouble();

TE1: Mismatched input

(Problem: Area of Circle)

TFB2 You may forget to use String.format("%.2f",

area) to display only 2 decimal places of a double.

Or you print the wrong variable.

Here is the example code to solve this issue:
String result = String.format("%.2f", area);
System.out.println(result);

TE2: Wrong decimal places

(Problem: Area of Circle)

TFB3 There is a space after the comma ,

There is an exclamation mark ! at the end of the

output.

TE3 Missing punctuation

(Problem: Say Hi to Anyone)

TFB4 An integer divided by another integer gives you an

integer in Java. For example, 11 / 2 gives 5.

However, 11 / 2.0 gives you 5.5

The following code may help you solve your

problem:
double s = (a + b + c) / 2.0;

TE4: Integer division issue

(Problem: Area of Triangle)

TFB5 You may forget to use String.format("%.2f",

area) to display only 2 decimal places of a double.

Or you print the wrong variable.

Here is the example code to solve this issue:
String result = String.format("%.2f", area);
System.out.println(result);

TE5: Wrong decimal places

(Problem: Area of Triangle)

TFB6 Please try the input cases such as 1 4 7 and 1 4 4 to

check the output of your program.

You may want to consider the problem in this way -

(b*b) - 4*a*c is called Discriminant

 When Discriminant is positive, there will be

two solutions.

 When Discriminant is zero, there will be only

one solution.

 When Discriminant is negative, there will be

no answer.

Note: you should not use Math.sqrt() on a negative

number, e.g., Math.sqrt(-3.14).

TE6: Inappropriate comparison

(Problem: Quadratic Equation 2)

TFB7 If there are two different roots, print the smaller one

the first line and the larger one on the second line.

TE7: Wrong output

(Problem: Quadratic Equation 2)

TFB8 Note: The user will only enter one integer with

three digits (e.g., 100, 911).

Try to use operators such as / (Division) and %

TE8: Mismatched input

(Problem: Sum of Digits)

www.manaraa.com

105

(Modulus) to get each digit of the integer. For

example:

234 / 100 will give 2

234 % 100 will give 34

234 % 10 will give 4

TFB9 In this problem, the user will enter two integers.

Your program failed to read two integers from the

user.

The following code is an example of reading two

integers:
Scanner in = new Scanner(System.in);
int a = in.nextInt();
int b = in.nextInt();

TE9: Mismatched input

(Problem: How Old Are We?)

TFB10 Your program may not have output in some cases.

Try the input cases 2 3 3 and 7 7 7 and fix the

problems of your program.

TE10: Forgot Special Cases

(Problem: Who is Max?)

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1: INTRODUCTION
	Student Misconceptions in Introductory Programming
	Theoretical Framework
	Conceptual Change Theories
	Models of Feedback
	Data-driven Feedback for Conceptual Change

	Instructional Approaches and Tools for Addressing Student Misconceptions
	Purpose of the Study
	Research Design
	Organization of the Remaining Chapters

	CHAPTER 2: LITERATURE REVIEW
	Misconceptions and Conceptual Change Theories
	Definitions of Misconceptions
	Conceptual Change Theories
	Summary

	Feedback in Education
	Definitions of Feedback
	Effects of Feedback
	Timing of Feedback
	Complexity of Feedback
	Source of Feedback

	Models of Feedback
	Summary

	Student Misconceptions in Introductory Programming
	Understanding Student Misconceptions
	Addressing Student Misconceptions
	Instructional Approaches
	Instructional Tools
	Novice Programming Environments
	Code Visualization Tools
	Automated Assessment Systems

	Summary

	Contribution of this Study

	CHAPTER 3: METHODOLOGY
	Methodological Framework: Design-Based Research (DBR)
	Settings and Participants
	The Summer Residential Program and Courses
	Participants
	Mulberry System

	Procedures
	Overview
	Stage 1
	Data Analysis
	Compilation Errors
	Test Errors

	Stage 2
	Feedback for Compilation Errors
	Feedback for Test Errors
	Data Analysis
	Quantitative Data Analysis
	Qualitative Data Analysis

	CHAPTER 4: RESULTS
	Identification of Misconceptions
	Common Compilation Errors
	Misconception 1: Deficient Knowledge of Fundamental Java Program Structure
	Misconception 2: Misunderstandings of Java Expressions
	Misconception 3: Confusion about Java Variables

	Common Test Errors
	Misconception 1: Misunderstandings of Java Input
	Misconception 2: Misunderstandings of Java Output
	Misconception 3: Confusion about Java Operators
	Misconception 4: Forgetting to Consider Special Cases

	Overall Effects of Feedback
	Difference in Overall Improvement Rates
	Difference in Improvement Rates of Solutions with Common Errors
	Difference in Improvement Rates of Solutions with and without Feedback

	Effects of Feedback on Evolution of Students’ Misconceptions
	Compilation Error Feedback Message with Best Improvement Rate
	Compilation Error Feedback Message with Worst Improvement Rate
	Test Error Feedback Message with Best Improvement Rate
	Test Error Feedback Message with Worst Improvement Rate

	Summary of Results

	CHAPTER 5: DISCUSSION AND CONCLUSIONS
	Student Misconceptions in Introductory Programming
	Common Compilation Errors and Underlying Misconceptions
	Common Test Errors and Underlying Misconceptions

	Feedback for Conceptual Change
	Overall Effects of Feedback
	Evolution of Students’ Misconceptions

	Implications
	Limitations and Future Research Directions
	Conclusions

	REFERENCES
	APPENDIX A. COURSE SYLLABUS
	APPENDIX B. FEEDBACK MESSAGES

