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Title: Understanding and Addressing Misconceptions in Introductory Programming: A Data-

Driven Approach 

Major Professor: James Lehman 

 

 

With the expansion of computer science (CS) education, CS teachers in K-12 schools should be 

cognizant of student misconceptions and be prepared to help students establish accurate 

understanding of computer science and programming. This exploratory design-based research 

(DBR) study implemented a data-driven approach to identify secondary school students’ 

misconceptions using both their compilation and test errors and provide targeted feedback to 

promote students’ conceptual change in introductory programming. Research subjects were two 

groups of high school students enrolled in two sections of a Java-based programming course in a 

2017 summer residential program for gifted and talented students. This study consisted of two 

stages. In the first stage, students of group 1 took the introductory programming class and used 

an automated learning system, Mulberry, which collected data on student problem-solving 

attempts. Data analysis was conducted to identify common programming errors students 

demonstrated in their programs and relevant misconceptions. In the second stage, targeted 

feedback to address these misconceptions was designed using principles from conceptual change 

and feedback theories and added to Mulberry. When students of group 2 took the same 

introductory programming class and solved programming problems in Mulberry, they received 

the targeted feedback to address their misconceptions. Data analysis was conducted to assess 

how the feedback affected the evolution of students’ (mis)conceptions.  

 

Using students’ erroneous solutions, 55 distinct compilation errors were identified, and 15 of 

them were categorized as common ones. The 15 common compilation errors accounted for 92% 

of all compilation errors. Based on the 15 common compilation errors, three underlying student 

misconceptions were identified, including deficient knowledge of fundamental Java program 

structure, misunderstandings of Java expressions, and confusion about Java variables. In 
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addition, 10 common test errors were identified based on nine difficult problems. The results 

showed that 54% of all test errors were related to the difficult problems, and the 10 common test 

errors accounted for 39% of all test errors of the difficult problems. Four common student 

misconceptions were identified based on the 10 common test errors, including misunderstandings 

of Java input, misunderstandings of Java output, confusion about Java operators, and forgetting 

to consider special cases.  

 

Both quantitative and qualitative data analysis were conducted to see whether and how the 

targeted feedback affected students’ solutions. Quantitative analysis indicated that targeted 

feedback messages enhanced students’ rates of improving erroneous solutions. Group 2 students 

showed significantly higher improvement rates in all erroneous solutions and solutions with 

common errors compared to group 1 students. Within group 2, solutions with targeted feedback 

messages resulted in significantly higher improvement rates compared to solutions without 

targeted feedback messages. Results suggest that with targeted feedback messages students were 

more likely to correct errors in their code. Qualitative analysis of students’ solutions of four 

selected cases determined that students of group 2, when improving their code, made fewer 

intermediate incorrect solutions than students in group 1. The targeted feedback messages appear 

to have helped to promote conceptual change. 

 

The results of this study suggest that a data-driven approach to understanding and addressing 

student misconceptions, which is using student data in automated assessment systems, has the 

potential to improve students’ learning of programming and may help teachers build better 

understanding of their students’ common misconceptions and develop their pedagogical content 

knowledge (PCK). The use of automated assessment systems with misconception identification 

components may be helpful in pre-college introductory programming courses and so is 

encouraged as K-12 CS education expands. Researchers and developers of automated assessment 

systems should develop components that support identifying common student misconceptions 

using both compilation and non-compilation errors. Future research should continue to 

investigate the use of targeted feedback in automated assessment systems to address students’ 

misconceptions and promote conceptual change in computer science education.  
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CHAPTER 1: INTRODUCTION 

The development of computing technology and its role in driving innovation and 

economic development in the 21st century has brought the need for expanding computer science 

(CS) education (Webb et al., 2017). Many countries have included computer science courses in 

their K-12 curriculum. In the U.S., Advanced Placement (AP) CS Principles, a new introductory 

computer science course for high school students has been developed (desJardins, 2015). In the 

U.K., computer science has become mandatory for students in K-12 schools (Brown, Sentance, 

Crick, & Humphreys, 2014). In New Zealand, computer science has been a mainstream subject 

since 2011 (Bell, Andreae, & Robins, 2014). Many other countries, such as Canada, Israel, 

Poland, and so forth, have created new or improved existing computer science curricula (Webb 

et al., 2017). With the expansion of computer science education, CS teachers in K-12 schools 

should be cognizant of student misconceptions and be prepared to help students establish 

accurate understanding of computer science and programming. This exploratory design-based 

research study implemented a data-driven approach to identify secondary school students’ 

misconceptions and provide targeted feedback to promote students’ conceptual change in 

introductory programming. 

Student Misconceptions in Introductory Programming  

Introductory CS courses are difficult for beginners (Guzdial, 2015; McCracken et al., 

2001), and students often exhibit misconceptions that impede their learning of introductory 

programming (Altadmri & Brown, 2015; Sorva, 2013). Qian and Lehman (2017) summarized 

literature regarding common misconceptions and other difficulties in introductory programming. 

For instance, variables are a very basic concept in most of the programming languages, but 

novices may mistakenly believe that the computer understands variables by the English 

meanings of their names, even though variable names are arbitrary (Kaczmarczyk, Petrick, East, 

& Herman, 2010; Sleeman, Putnam, Baxter, & Kuspa, 1986). Sequential execution of code is 

another challenging concept for beginners (du Boulay, 1986; Simon, 2011). For instance, 

students may mistakenly believe that when the Boolean expression of a conditional statement 

becomes true, even if this occurs twenty lines below the conditional statement, the program will 
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go back and execute the code in that conditional block (Pea, 1986). High-level concepts such as 

classes, objects, instances, and their relationships in object-oriented programming (OOP) also 

often confuse students (Guzdial, 1995; Holland, Griffiths, & Woodman, 1997; Ragonis & Ben-

Ari, 2005; Sorva, 2013). 

Students in introductory programming courses may exhibit syntax errors, logic errors, 

and other difficulties when writing programs to solve problems. For instance, novice students 

often make syntactic mistakes in their code, such as mismatching parentheses, missing 

semicolons, failing to declare a variable, using malformed Boolean expressions, mistakenly 

using the assignment operator (=) instead of the comparison operator (==), and so forth 

(Altadmri & Brown, 2015; Jackson, Cobb, & Carver, 2005; Sirkia & Sorva, 2012). In addition, 

they usually lack well-established programming strategies (Clancy & Linn, 1999; Davies, 1993; 

Lister, Simon, Thompson, Whalley, & Prasad, 2006; Sajaniemi & Prieto, 2005; Soloway, 1986) 

and then face difficulties with planning, composing, and debugging programs, including failing 

to understand and decompose the task (Muller, 2005; Robins, Haden, & Garner, 2006), 

forgetting to test boundary conditions and unexpected cases (Fisler, Krishnamurthi, & Siegmund, 

2016; Sajaniemi & Kuittinen, 2005; Spohrer & Soloway, 1986), and inappropriately tracing their 

code and locating errors (Ben-David Kolikant & Mussai, 2008; Fitzgerald et al., 2008; McCauley 

et al., 2008). 

Qian and Lehman (2017) described factors that may contribute to students’ 

misconceptions in learning to program. Major factors that contribute to students’ misconceptions 

include interference caused by prior knowledge (Clancy, 2004; Miller, 2014) and flawed mental 

models of computer operation (Guzdial, 2015; Sorva, 2013). Novice students may mistakenly 

use concepts they learned in math to understand programming concepts (e.g., variables), which 

look similar but mean something quite different (Clancy, 2004; Qian & Lehman, 2017). As most 

programming languages are natural-language-based, students’ existing knowledge of natural 

language may hinder their construction of the meanings of programming concepts (Bruckman & 

Edwards, 1999; du Boulay, 1986; Miller, 2014). In addition, unlike experts, beginners’ 

conceptual knowledge is often fragmentary and not organized into meaningful patterns (Clancy 

& Linn, 1999; Lister, 2011; McCauley et al., 2008; Sajaniemi & Prieto, 2005; Whalley et al., 

2006). Thus, they may only be able to understand programs in a line-by-line manner and then fail 

to holistically evaluate and properly debug a program (Ben-David Kolikant & Mussai, 2008; 
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Lister et al., 2006). Students in introductory programming courses also often hold flawed mental 

models of the notional machine, which refers to an abstract computer that executes code in the 

programmer’s mind (du Boulay, 1986; Guzdial, 2015; Sorva, 2013). Without correct 

understanding of the notional machine, a student may fail to understand the sequential execution 

of statements (du Boulay, 1986; Simon, 2011). 

Student misconceptions can interfere with learning, and a variety of factors may 

contribute to these inaccurate understandings (Clancy, 2004; Qian & Lehman, 2017; Smith, 

diSessa, & Roschelle, 1994). While previous studies have cataloged a broad range of student 

misconceptions including syntax errors and other difficulties caused by misconceptions, most of 

them have focused on post-secondary students (e.g., Altadmri & Brown, 2015; Jackson et al., 

2005; Sirkia & Sorva, 2012). As CS education has been expanding into K-12 schools, more 

information is needed to understand misconceptions among pre-college learners who take 

introductory programming courses. This study investigated misconceptions among secondary 

school students taking an introductory programming course. 

Theoretical Framework 

In the learning of science, conceptions refer to students’ understandings of academic 

concepts (Taber, 2013). Misconceptions are problematic conceptions held by students which are 

inconsistent with normative conceptions and often entrenched (Clement, 1993; Smith et al., 

1994; Taber, 2013). Similarly, in the learning of programming, student misconceptions are 

students’ deficient or erroneous understandings of programming concepts (Qian & Lehman, 

2017; Sorva, 2013; Taber, 2013). In previous literature, a variety of terms have been used to 

describe students’ inaccurate understandings in learning to program, such as “misconceptions” 

(Sorva, 2013), “difficulties” (du Boulay, 1986), “errors” (Sleeman et al., 1986), “bugs” (Pea, 

1986), “mistakes” (Altadmri & Brown, 2015), and so forth. With these different terms, 

researchers have discussed students’ syntax errors in the code, misunderstandings of 

programming concepts, difficulties in writing and debugging programs, and so on (Sorva, 2013). 

While these different misunderstandings are often lumped together, qualitative differences exist 

between a simple syntax error in a loop statement, conceptual misunderstandings of loops, and 

challenges of using loop constructs to solve problems. However, these difficulties are related to 

each other, and problems of students’ conceptual understandings are the pivot that may lead to 
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syntactic errors, logic errors, and other difficulties (Bayman & Mayer, 1988; de Raadt, 2008; 

Ebrahimi, 1994; Lopez, Whalley, Robbins, & Lister, 2008; Qian & Lehman, 2017). Thus, to help 

students succeed in introductory programming, it is vital to understand and address student 

misconceptions. 

Conceptual Change Theories 

In science and mathematics education, researchers and educators have developed 

conceptual change theories to address student misconceptions. Conceptual change denotes the 

process through which learners’ existing (mis)conceptions develop into intended normative 

conceptions (Duit & Treagust, 2003; Vosniadou & Skopeliti, 2014). Conceptual change theories 

inform the process of modifying student misconceptions to help students establish normative 

understandings of the academic concepts to be learned (Vosniadou & Skopeliti, 2014). 

Researchers of conceptual change theories share the ideas that (a) learners’ own pre-instructional 

conceptions (also called naïve knowledge) are based on their daily experience; (b) learners’ 

existing knowledge has an impact on the acquisition of new knowledge; and (c) student 

misconceptions are often entrenched and conceptual change is time consuming (Özdemir & 

Clark, 2007; Taber, 2013).  

Two conflicting theoretical perspectives, revolutionary conceptual change and 

evolutionary conceptual change, have emerged over the decades of research (Abimbola, 1988; 

Özdemir & Clark, 2007; Taber, 2013). The revolutionary conceptual change perspective posits 

that learners’ existing naïve knowledge is organized in a theory-like manner, and learners use 

their naïve theories to interpret and construct new concepts (Özdemir & Clark, 2007; Posner, 

Strike, Hewson, & Gertzog, 1982). Thus, learners’ existing misconceptions are a potential barrier 

to new learning, and conceptual change is a revolutionary process that replaces learners’ naïve 

theory-like knowledge structures with intended scientific conceptions. According to the 

revolutionary conceptual change perspective, successful instruction needs to help students 

confront their misconceptions by presenting the academic concept to students in a way that 

produces cognitive conflicts, and then help students abandon their misconceptions and adopt the 

new conceptions (Abimbola, 1988; Posner et al., 1982).  

In contrast, the evolutionary conceptual change perspective postulates that learners’ prior 

naïve knowledge consists of relatively unstructured collections of quasi-independent elements 
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(Abimbola, 1988; diSessa, 1993). From this viewpoint, conceptual change is an evolutionary 

process of correcting and enhancing existing knowledge elements and establishing and refining 

the relationships among conceptions. Therefore, learners’ existing (mis)conceptions should be 

considered as resources for constructing new concepts, and the purpose of instruction is to 

reconcile students’ prior (mis)conceptions with new learning, rather than replacing them 

(Abimbola, 1988; diSessa, 2013, 2014). 

While debate between the two perspectives is ongoing (see diSessa, 2013 and Vosniadou, 

2013), the current trend in conceptual change research has shown convergence (Vosniadou & 

Skopeliti, 2014). Researchers agree that evolutionary conceptual change is a prerequisite of 

revolutionary conceptual change (Taber, 2013; Vosniadou & Skopeliti, 2014), and success in 

conceptual change requires tracking the development of learners’ (mis)conceptions using real-

time data of learning (diSessa, 2014; Vosniadou, 2013). With precise understanding of the nature 

and current status of student (mis)conceptions, instructors can choose proper strategies for 

accomplishing conceptual change, such as “directly challenging student conceptions,” “ignoring 

them and simply teaching the canonical ideas,” or “seeing learners’ conceptions as useful (or 

necessary) starting points that need to be modified over time through a multistage conceptual 

trajectory” (Taber, 2014, p. 40). While conceptual change theories have been widely adopted to 

understand the development of student knowledge in math and science (Vosniadou & Skopeliti, 

2014), they have received relatively little attention in CS education to date (Qian & Lehman, 

2017; Sorva, 2012). This study applied conceptual change theories to students’ learning of 

introductory programming in computer science. 

Models of Feedback 

Feedback is essential to help learners successfully construct new knowledge. Historically, 

researchers have defined feedback from three different perspectives: feedback as motivator, 

feedback as reinforcement, and feedback as information (Kulhavy & Wager, 1993). According to 

the motivational viewpoint, feedback is a motivator or incentive for enhancing learning 

performance. However, the mix of motivation and feedback makes it difficult to conceptualize 

how feedback works (Kulhavy & Wager, 1993). The feedback-as-reinforcement perspective 

posits that feedback producing a satisfying effect is likely to make the response repeated in the 

future. This idea was derived from E. L. Thorndike’s Law of Effect and greatly developed by B. 
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F. Skinners’ study of programmed instruction (Kulhavy & Wager, 1993; Mory, 2004). These 

researchers believed that telling the learner his or her answer is correct would increase the 

probability of making the same right response in the future. Hence, studies of the feedback-as-

reinforcement perspective mainly focused on learners’ correct responses and often ignored errors 

(Kulhavy, 1977). Instead of concentrating on correct responses, the feedback-as-information 

perspective emphasizes learners’ erroneous responses and considers feedback as information for 

correcting learners’ errors and misunderstandings (Butler & Winne, 1995; Hattie & Timperley, 

2007; Kulhavy & Wager, 1993; Shute, 2008). While researchers nowadays do not deny that 

feedback in education may lead to changes in learners’ motivation and reinforcement of learning, 

they agree that feedback in essence is information for facilitating learning (Hattie & Gan, 2011; 

Hattie & Timperley, 2007; Shute, 2008). More specifically, feedback is information provided by 

an agent to change learners’ thinking or behavior for the purpose of enhancing learning (Hattie & 

Timperley, 2007; Shute, 2008).  

A number of factors may influence the effect of feedback on learning, including timing, 

complexity, and sources of feedback (Hattie & Timperley, 2007; Kulhavy & Wager, 1993; Van 

der Kleij, Feskens, & Eggen, 2015), and researchers have developed different models of 

feedback to explain how feedback facilitates learning and provide guidelines for designing 

effective feedback. Well-known models of feedback include the certitude model with a focus on 

learner response confidence (Kulhavy & Stock, 1989), the five-stage model emphasizing 

learners’ mindful reflection (Bangert-Drowns, Kulik, Kulik, & Morgan, 1991), and the 

connectionist model concentrating on the retention of initial lesson responses (Clariana, Wagner, 

& Murphy, 2000). Each of these models mainly addresses one factor that may contribute to 

feedback’s effects, such as confidence (Kulhavy & Stock, 1989), self-regulation (Bangert-

Drowns et al., 1991; Butler & Winne, 1995), and timing (Clariana et al., 2000).  

Recently, a more inclusive model, the visibility model of feedback, with an emphasis on 

visualizing learners’ current knowledge states, has been developed and widely accepted (Hattie 

& Gan, 2011; Hattie & Timperley, 2007). According to the visibility model, feedback reduces 

“the discrepancy between what is understood and what is aimed to be understood” (Hattie & 

Gan, 2011, p. 257-258). The crux of feedback design is to make the discrepancy visible to both 

the instructor and the learner. The visibility means that effective feedback needs to answer three 

major questions: “Where am I going?,” “How am I going?,” and “Where to next?” (Hattie & 
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Timperley, 2007). In other words, procedures for designing effective feedback include (1) clearly 

describing the desired learning outcomes, (2) precisely analyzing learners’ current knowledge 

states, and (3) identifying the discrepancy between the current states and the intended outcomes 

and providing information for reducing the discrepancy and enhancing learning (Hattie & Gan, 

2011; Hattie & Timperley, 2007). From this point of view, the problem of traditional feedback 

design is that it neglects to examine learners’ current (mis)conceptions but simply provides 

corrective information for fixing superficial learner errors (Hattie & Gan, 2011). The new model 

of feedback requires scrutinizing learners’ erroneous responses, to grasp their positions on the 

trajectory towards the success of the learning goals, and provide corrective information targeted 

at addressing student misconceptions (Hattie & Gan, 2011; Hattie & Timperley, 2007). 

Data-driven Feedback for Conceptual Change 

The evolutionary conceptual change theory offers a framework for understanding student 

misconceptions and the development of ways to address student (mis)conceptions. The visibility 

model provides a framework for designing feedback for addressing misconceptions and 

promoting conceptual change. They both emphasize the importance of understanding current 

states of learner knowledge and tracking the evolution of student (mis)conceptions using learner 

data. This study adopted the evolutionary conceptual change theory and the visibility model of 

feedback as the theoretical framework for understanding and addressing student misconceptions. 

While previous studies in computer science education have discussed student misconceptions 

from a variety of perspectives, little work has drawn on our understanding of evolutionary 

conceptual change and appropriate use of data-driven feedback to promote conceptual change 

(Qian & Lehman, 2017). 

Instructional Approaches and Tools for Addressing Student Misconceptions 

In computer science education, researchers and educators have developed various 

instructional approaches to address students’ misconceptions in introductory programming (Qian 

& Lehman, 2017). Using program examples in instruction is one effective approach. Previous 

research has revealed that using worked-out examples in instruction can improve students’ 

performance in solving problems (Ginat, Shifroni, & Menashe, 2011). In addition, asking 

students to comprehend and explain example programs can help to disclose students’ 
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misconceptions and develop their program composing and debugging skills (McCauley et al., 

2008; Teague & Lister, 2014; Vainio & Sajaniemi, 2007). Another approach is explicitly 

teaching programming strategies to help students reduce cognitive load in programming and 

improve their ability to decompose and solve problems (de Raadt, 2008; Muller, Ginat, & 

Haberman, 2007). Some researchers advocate using another approach, a concept inventory 

(Goldman et al., 2010; Taylor et al., 2014; Tew, 2010). A concept inventory is an assessment 

aimed at evaluating students’ understanding of a group of concepts (Goldman et al., 2010; Tew, 

2010). Using a concept inventory to evaluate students’ understanding of key programming 

concepts enables instructors to identify common misconceptions students have and then improve 

their instruction based on the misconceptions (Taylor et al., 2014). Another instructional 

approach is Peer Instruction (Porter, Lee, & Simon, 2013), which focuses on engaging students 

in active learning of new concepts. It includes three steps: answering a question individually, 

having discussions with peers, and reconsidering the question again (Simon, Kohanfars, Lee, 

Tamayo, & Cutts, 2010). Previous research on Peer Instruction indicated that it can effectively 

improve students’ learning performance in introductory programming (Porter et al., 2013; Simon 

et al., 2010). 

In addition to instructional approaches, researchers and educators have also developed 

instructional tools to address students’ misconceptions in introductory programming, such as 

novice programming environments that help to prevent syntax errors (Kelleher & Pausch, 2005; 

Resnick et al., 2009), debugging tools that improve students’ understanding of their errors 

(Becker et al., 2016; Ko & Myers, 2005), and visualization tools that illustrate programming 

concepts and program execution (Guo, 2013; Sorva, Karavirta, & Malmi, 2013). Of particular 

interest for this study is the development of automated assessment systems that can automatically 

assess students’ programs and provide immediate feedback to help students learn (De-La-Fuente-

Valentín, Pardo, & Delgado Kloos, 2013; Douce, Livingstone, & Orwell, 2005; Gerdes, Heeren, 

Jeuring, & van Binsbergen, 2017). One way to provide feedback is to manually integrate 

enhanced compiler error messages (Becker, 2016). Decaf is a tool that can provide novice-

friendly feedback messages by enhancing raw Java compiler error messages (Becker, 2016). In a 

study of using Decaf to teach a Java-based CS1 class, Becker (2016) reported that the group 

receiving feedback messages made 32% fewer errors than the group only seeing the raw Java 

compiler error messages. Another way to provide feedback is designing algorithms to 
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automatically diagnose students’ programs and personalize the feedback for students (Barnes & 

Stamper, 2010; Rivers & Koedinger, 2017; Xu & Chee, 2003). However, such systems typically 

only work on simple programming problems and provide feedback based on students’ errors in 

code rather than misconceptions (Gerdes et al., 2017). 

This study used Mulberry, an automated assessment system designed for Java learners, to 

support learning. While many automated assessment systems have been developed and tested by 

researchers, most systems to date either provide feedback based on compiler errors (e.g., Becker, 

2016) or provide direct feedback for correcting simple errors in code (e.g., Gerdes et al., 2017). 

This study focuses on analyzing both compilation and test errors in students’ programs to 

understand student misconceptions and provide feedback targeted at promoting conceptual 

change. 

Purpose of the Study 

The purpose of this exploratory design-based research study was to examine secondary 

school students’ common misconceptions in introductory programming using both their 

compilation and test errors and investigate how feedback affected the evolution of students’ 

(mis)conceptions using a data-driven approach. The following research questions guided the 

study:  

1. What are secondary school students’ common misconceptions in introductory programming?  

2. How does feedback, developed to promote conceptual change, affect students’ 

(mis)conceptions? 

Research Design 

A two-stage, exploratory, design-based study was implemented. Research subjects in this 

study were two groups of high school students enrolled in two sections of a Java-based 

programming course as part of a 2017 summer residential program for gifted and talented 

students. Students were identified as high ability according to the rules of the residential 

program.  

In the Java-based programming course, Mulberry, a programming learning system 

designed for Java learners, was integrated into instruction. Mulberry has a pool of 51 

programming problems, and students are required to write short programs to produce the correct 
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output to solve the problems. Mulberry automatically assesses students’ solutions by comparing 

the output of their programs with the expected output. When a student submits a program 

producing the incorrect output, he or she receives immediate feedback from the system and can 

try as many times as needed until his or her solution is correct. Mulberry collects all the 

programs from students when they attempt to solve the problems.  

For the first group, when students had errors in their solutions, they were told that errors 

existed in their code and were encouraged to try again. After the first group’s course ended, data 

analysis was conducted to identify common programming errors students demonstrated in their 

programs and relevant misconceptions to answer RQ 1. Then, targeted feedback to address these 

misconceptions was designed using principles from conceptual change and feedback theories 

(diSessa, 2014; Hattie & Gan, 2011; Vosniadou & Skopeliti, 2014) and added to Mulberry. 

When students of the second group solved problems in Mulberry and submitted solutions 

producing incorrect output, they received the targeted feedback to address their misconceptions. 

After the second group’s course ended, data analysis was conducted to assess how feedback 

affected the evolution of students’ (mis)conceptions to answer RQ 2. 

Organization of the Remaining Chapters 

The remaining chapters of this dissertation are organized as follows. Chapter 2 provides a 

review of the relevant literature that frames this study. The reviewed literature discusses three 

major topics: misconceptions and conceptual change theories, feedback in education, and student 

misconceptions in introductory programming. Chapter 3 provides a description of the research 

methods, participants, and procedures. Chapter 4 presents the results of the study. Chapter 5 

discusses the results, conclusions, and implications. 
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CHAPTER 2: LITERATURE REVIEW 

The goal of this study was to investigate student misconceptions in introductory 

programming and the effects of targeted feedback for addressing misconceptions and promoting 

conceptual change. This chapter first reviews relevant literature on misconceptions and feedback 

in education to build the theoretical framework for this study. Second, studies about student 

misconceptions in introductory programming are reviewed. 

Misconceptions and Conceptual Change Theories 

Student misconceptions have gained attention from researchers and educators in science 

education since 1980s. A variety of conceptual change theories have been developed to explain 

and address student misconceptions. This section reviews studies about misconceptions and 

conceptual change theories. 

Definitions of Misconceptions 

In the research of student conceptions in science, the use of terminology is problematic 

(Abimbola, 1988; Taber, 2013). Researchers often mistakenly assume that people understand the 

same term in the same way (Taber, 2013). Hence, it is important to clearly define the terms of 

the study in the first place. In science education, conceptions refer to students’ understandings of 

academic concepts (Taber, 2013). Students’ development of conceptual understanding may vary 

across individuals, because students may be taught the same academic concept (e.g., energy) in 

different classes but would each build their own personal conceptions (e.g., of energy). 

Misconceptions are problematic conceptions held by students which are inconsistent with 

normative conceptions and often entrenched (Clement, 1993; Smith et al., 1994; Taber, 2013). 

While a myriad of studies regarding student misconceptions in science have been conducted over 

the past several decades, nowadays researchers are still using different terms to describe 

students’ understandings of academic concepts that are at odds with scientific ones, such as 

misconceptions, alternative conceptions, alternative frameworks, naïve knowledge, intuitive 

knowledge, and others (Clement, 1993; diSessa, 2014; Klopfer, Champagne, & Gunstone, 1983; 

Özdemir & Clark, 2007; Taber, 2014). Though some minor differences exist among these terms, 
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generally they are considered as synonyms (Taber, 2014). This study uses the term 

misconception as it is widely used by computing education researchers (Sorva, 2013). 

Conceptual Change Theories 

In science and mathematics education, researchers and educators have developed 

conceptual change theories to address student misconceptions (Vosniadou & Skopeliti, 2014). 

Conceptual change denotes the process through which learners’ existing (mis)conceptions 

develop into intended normative conceptions (Duit & Treagust, 2003; Vosniadou & Skopeliti, 

2014). Conceptual change theories inform the process of modifying student misconceptions to 

help students establish normative understandings of the academic concepts to be learned 

(Vosniadou & Skopeliti, 2014). 

After decades of research, two conflicting theoretical perspectives, revolutionary 

conceptual change and evolutionary conceptual change, have emerged (Abimbola, 1988; 

Özdemir & Clark, 2007; Taber, 2013). The revolutionary conceptual change perspective (also 

known as the knowledge-as-theory perspective) posits that learners’ existing naïve knowledge is 

organized in a theory-like manner, and learners use their naïve theories to interpret and construct 

new concepts (Özdemir & Clark, 2007; Posner et al., 1982). Thus, learners’ existing 

misconceptions are a potential barrier to new learning, and conceptual change is a revolutionary 

process that replaces learners’ naïve theory-like knowledge structures with intended scientific 

conceptions. According to the revolutionary conceptual change perspective, successful 

instruction needs to help students confront their misconceptions, present the academic concept to 

students in a way that produces cognitive conflicts, and then help students abandon their 

misconceptions and adopt the new conceptions (Abimbola, 1988; Posner et al., 1982). Thus, the 

new conception needs to be intelligible, plausible, and fruitful (Posner et al., 1982). In other 

words, the new conception should be easy to understand, offer more explanatory power than the 

old conception, and demonstrate “the potential to be extended, to open up new areas of inquiry” 

(Posner et al., 1982, p. 214). 

In contrast, the evolutionary conceptual change perspective (also known as knowledge-

as-elements perspective) postulates that learners’ prior naïve knowledge consists of relatively 

unstructured collections of quasi-independent elements (Abimbola, 1988; diSessa, 1993). From 

this viewpoint, conceptual change is an evolutionary process of correcting and enhancing 
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existing knowledge elements and establishing and refining the relationships among conceptions. 

These naïve knowledge elements of students are called phenomenological primitives (p-prims) 

by diSessa (1993, 2014). P-prims are rooted in students’ superficial interpretations of their daily 

experience. Students often use p-prims to interpret scientific phenomena and also their life 

experience. The key feature of p-prims is their primitiveness that enables the naïve knowledge 

elements to be self-explanatory. Unlike the revolutionary conceptual change perspective, 

researchers of evolutionary conceptual change believe that learners’ existing (mis)conceptions 

should be considered as productive resources for constructing new concepts, and the purpose of 

instruction is to reconcile students’ prior (mis)conceptions with new learning, rather than 

replacing them (Abimbola, 1988; diSessa, 2013, 2014). Although the composition of students’ 

naïve knowledge elements can be productive when constructing new knowledge, few studies 

have investigated the productive aspects of students’ prior knowledge (diSessa, 2014). 

Furthermore, according to the evolutionary conceptual change perspective, student 

misconceptions are contextually sensitive (diSessa, 2013; Özdemir & Clark, 2007). In different 

learning contexts, different knowledge elements of students may be activated and used in the 

knowledge construction process. When the learning contexts are similar, students may also form 

a variety of intermediate (mis)conceptions during conceptual change.  

While debate between the two perspectives is ongoing (see diSessa, 2013 and Vosniadou, 

2013), the current trend in conceptual change research has shown convergence (Vosniadou & 

Skopeliti, 2014). Vosniadou and Skopeliti (2014) proposed the framework theory approach, 

which tried to resolve the conflicts between the two perspectives. On the one hand, this approach 

agrees that conceptual change is an evolutionary process, naïve knowledge elements exist in 

students’ prior knowledge, and student misconceptions are not independent of learning contexts. 

On the other hand, it argues that students tend to use coherent framework theories, which are 

generated from their naïve knowledge, to interpret phenomena. The framework theory approach 

posits that before students successfully understand the new academic concept, the interaction 

between the new concept and their existing framework theories results in various synthetic 

models, which are intermediate states of knowledge with partially correct interpretation 

(Vosniadou, 1994; Vosniadou & Skopeliti, 2014).  

Nowadays, researchers of conceptual change theories share the ideas that (a) learners’ 

own pre-instructional conceptions (also called naïve knowledge) are based on their daily 
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experience; (b) learners’ existing knowledge has an impact on the acquisition of new knowledge; 

and (c) student misconceptions are often entrenched and conceptual change is time consuming 

(Özdemir & Clark, 2007; Taber, 2013). Researchers agree that evolutionary conceptual change is 

a prerequisite of revolutionary conceptual change (Taber, 2013; Vosniadou & Skopeliti, 2014), 

and success in conceptual change requires tracking the development of learners’ 

(mis)conceptions using real-time data of learning (diSessa, 2014; Vosniadou, 2013). With 

precise understanding of the nature and current status of student (mis)conceptions, instructors 

can choose proper strategies for accomplishing conceptual change, such as “directly challenging 

student conceptions,” “ignoring them and simply teaching the canonical ideas,” or “seeing 

learners’ conceptions as useful (or necessary) starting points that need to be modified over time 

through a multistage conceptual trajectory” (Taber, 2014, p. 40). 

Summary 

Conceptual change theories stem from studies in the fields of science and mathematics 

education. However, they may also be valuable to studies in computer science education as they 

provide frameworks for understanding the formation and evolution of student misconceptions 

and offer instructional strategies for addressing student misconceptions. According to conceptual 

change theories, the modification of student misconceptions is an evolutionary process. Careful 

analysis of students’ existing conceptions and considering learners’ naïve knowledge as a 

productive resource for knowledge construction is vital to promote conceptual change (diSessa, 

2014; Vosniadou & Skopeliti, 2014). The key to address student misconceptions is describing 

the knowledge acquisition process and tracking the evolution of learners’ understandings using 

learner data (diSessa, 2013, 2014; Vosniadou, 2013). While conceptual change theories have 

been widely adopted to understand the development of student knowledge in math and science 

(Vosniadou & Skopeliti, 2014), they have received relatively little attention in CS education to 

date (Qian & Lehman, 2017; Sorva, 2012). 

Feedback in Education 

There is no doubt that feedback is important in education. However, researchers often 

define feedback differently and have not reached an agreement on its impact on learning. Studies 

about timing, complexity, and sources of feedback often report inconsistent results. This section 
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reviews studies on the definitions of feedback in education, the effects of feedback, and the 

models for designing effective feedback. 

Definitions of Feedback 

Feedback is essential to help learners successfully construct new knowledge. Historically, 

researchers have defined feedback from three different perspectives: feedback as motivator, 

feedback as reinforcement, and feedback as information (Kulhavy & Wager, 1993). According to 

the motivational viewpoint, feedback is a motivator or incentive for enhancing learning 

performance. However, the mix of motivation and feedback makes it difficult to conceptualize 

how feedback works (Kulhavy & Wager, 1993). The feedback-as-reinforcement perspective 

posits that feedback producing a satisfying effect is likely to make the response repeated in the 

future. This idea was derived from E. L. Thorndike’s Law of Effect and greatly developed by B. 

F. Skinners’ study of programmed instruction (Kulhavy & Wager, 1993; Mory, 2004). These 

researchers believed that telling the learner his or her answer is correct would increase the 

probability of the learners making the same right response in the future. Hence, studies of the 

feedback-as-reinforcement perspective mainly focused on learners’ correct responses and often 

ignored errors (Kulhavy, 1977).  

Instead of concentrating on correct responses, the feedback-as-information perspective 

emphasizes learners’ erroneous responses and considers feedback as information for correcting 

learners’ errors and misunderstandings (Butler & Winne, 1995; Hattie & Timperley, 2007; 

Kulhavy & Wager, 1993; Shute, 2008). Butler and Winne (1995) proposed that feedback is 

“information with which a learner can confirm, add to, overwrite, tune, or restructure 

information in memory, whether that information is domain knowledge, metacognitive 

knowledge, beliefs about self and tasks, or cognitive tactics and strategies” (p. 275). Hattie and 

Timperley (2007) defined feedback as information provided by an agent aiming to reduce the 

gap between the learner’s current and intended understanding. According to Shute (2008), 

feedback is “information communicated to the learner that is intended to modify his or her 

thinking or behavior for the purpose of improving learning” (p. 154). While researchers 

nowadays do not deny that feedback in education may lead to changes in learners’ motivation 

and reinforcement of learning, they agree that feedback in essence is information for facilitating 

learning (Hattie & Gan, 2011; Hattie & Timperley, 2007; Shute, 2008). More specifically, 
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feedback is information provided by an agent to change learners’ thinking or behavior for the 

purpose of enhancing learning (Hattie & Timperley, 2007; Shute, 2008). 

Effects of Feedback 

While feedback is treated differently by different researchers, overall it is powerful in 

learning and teaching within various learning contexts (Hattie & Timperley, 2007; Kulhavy & 

Wager, 1993; Van der Kleij et al., 2015). However, previous studies have not reached an 

agreement on the effects of feedback (Kluger & DeNisi, 1996; Shute, 2008; Van der Kleij et al., 

2015). Three major variables influencing the effects of feedback have been discussed by 

researchers: timing (immediate vs. delayed), complexity (simple vs. complex), and source 

(external vs. internal). 

Timing of Feedback 

Even though the timing of feedback has been widely studied, conflicting results exist in 

previous research (Kulik & Kulik, 1988; Shute, 2008; Van der Kleij et al., 2015). Results of 

some studies have favored immediate feedback, which refers to feedback provided immediately 

after the learner’s response. In an early meta-analysis of findings on feedback timing, Kulik and 

Kulik (1988) concluded that immediate feedback was more effective than delayed feedback in 

actual classroom settings. According to the meta-analysis on effects of feedback in computer-

based instruction conducted by Azevedo and Bernard (1995), studies using immediate posttests 

showed a mean weighted effect size of 0.80, while a mean effect size was estimated at 0.35 for 

studies involving delayed posttests. By studying students who learned Lisp programming using 

the ACT Programming Tutor, Corbett and Anderson (2001) noted that immediate feedback 

increased the learning rate while producing the equivalent performance. In their study, three 

versions of feedback were offered to students: immediate feedback with automatic error 

correction, immediate feedback with learner-controlled error correction, and delayed feedback on 

learners’ demand with learner-controlled error correction. Students in the first group received 

immediate feedback when they made a mistake, and the tutor automatically corrected the errors 

for them. The second group students also got immediate feedback on bugs but had to fix errors 

by themselves. The third group students only saw feedback when they requested. Though the 
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three groups performed equivalently on the tests, the results indicated that immediate-feedback 

groups learned the content faster than the demand-feedback group (Corbett & Anderson, 2001).  

Delayed feedback means that an interval exists between response and feedback. The 

interval can be minutes, hours, days, or longer in different studies (Shute, 2008). Previous studies 

(Butler, Karpicke, & Roediger, 2007; Kulik & Kulik, 1988) reported the superiority of delayed 

feedback in testing situations. In an experiment investigating the feedback effects of different 

degrees of delay from 0 s to 30 s, Schroth (1992) found that delayed feedback was beneficial to 

learning transfer while it decreased the rate of initial learning. Kulhavy (1977) pointed out that 

with delayed feedback learners showed better performance in retention tests because of the 

delay-retention effect (Kulhavy & Anderson, 1972). The delay-retention effect posits that 

corrective information will be more effective when it is delayed because learners may forget the 

initial errors during the interval. On the contrary, another study about feedback timing and 

retention indicated that delayed feedback led to greater retention of initial lesson responses than 

immediate feedback, whether the initial responses were right or wrong (Clariana et al., 2000). 

Overall, it seems that delayed feedback is superior to immediate feedback in some 

circumstances. 

In addition to the conflicting reports of effectiveness of immediate and delayed feedback, 

some other studies also reported that the timing of feedback showed no significant effects on 

learning (Jaehnig & Miller, 2007; Mory, 2004). However, it is not wise to discuss the effects of 

feedback simply considering its timing. First, even though immediate feedback is easy to define, 

the meaning of delayed feedback is often ambiguous (Van der Kleij et al., 2015). Does a one-

minute delay have the same effects as a one-hour delay? It is difficult to answer. Furthermore, 

with different intended learning outcomes, immediate and delayed feedback may show different 

effects (Shute, 2008). Immediate feedback seems to be more beneficial to lower order learning 

outcomes while delayed feedback appears to be more effective on higher order learning 

outcomes (Van der Kleij et al., 2015). Therefore, without discussing the content of feedback and 

the learning contexts, directly comparing the effects of immediate and delayed feedback 

probably is meaningless. 
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Complexity of Feedback 

Another commonly researched variable that may contribute to the effects of feedback is 

complexity (Mory, 2004; Shute, 2008; Van der Kleij et al., 2015). When discussing the 

complexity of feedback, two similar categorizations are often applied. The first one categorizes 

feedback as outcome feedback and cognitive feedback (Balzer, Doherty, & O’Connor, 1989; 

Butler & Winne, 1995). Outcome feedback, sometimes also called “knowledge of results,” 

provides verification information of the correctness of a learner response. Rather than merely 

telling a learner whether his or her response is correct or incorrect, cognitive feedback conveys 

additional information for improving the response. The complexity of cognitive feedback may 

vary depending on how much extra information it includes.  

Another categorization contains three types of feedback: knowledge of results (KR), 

knowledge of correct response (KCR), and elaborated feedback (EF) (Dempsey, Driscoll, & 

Swindell, 1993; Van der Kleij et al., 2015). KR is same as the outcome feedback in the former 

categorization and tells the learner whether his or her answer is right or wrong. KCR provides 

the correct answer for learners. EF contains additional corrective information such as hints and 

extra learning material in order to guide the learner towards the right response. Though different 

terms are used, the two categorizations are similar to each other. Outcome feedback is the same 

as KR. As KCR and EF provide corrective information rather than only verification information, 

they both can be considered as cognitive feedback. Hence, it is possible to combine the two 

categorizations.  

According to Kulhavy and Stock (1989), effective feedback usually consists of two 

essential and separable components: verification and elaboration. Therefore, we can merge the 

two categorizations in this way: if the feedback only offers verification, it is outcome feedback or 

KR; if the feedback contains additional corrective information, such as the correct answer, 

clarification of the correct answer, explanation of the errors, guidance for revision, and so forth, 

which are aimed at correcting the learner’s misunderstanding, it is cognitive feedback or 

elaborated feedback. Thus, KCR, simply providing the correct answer, can be considered as a 

special version of elaborated feedback. 

Obviously, cognitive feedback is more complex than outcome feedback. Does the 

complexity of feedback matter? Previous research has shown inconsistent results (Mory, 2004). 

In a study using five modes of feedback: no feedback, outcome feedback, KCR, cognitive 
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feedback, and the combination of outcome feedback and cognitive feedback, Gilman (1969) 

reported that in general cognitive feedback was more effective than outcome feedback, and the 

combination group showed better immediate retention. On the contrary, Wentling (1973) 

compared using outcome feedback and KCR for male high school students in the course General 

Automobile Mechanics and found that outcome feedback resulted in better immediate 

achievement in unit tests. In the dissertation of Lee (1985), no significant differences were found 

between using outcome and cognitive feedback. 

Specifically, regarding cognitive feedback, various studies have been conducted to 

compare the effectiveness of different types of elaborative information (Jaehnig & Miller, 2007; 

Sleeman, Kelly, Martinak, Ward, & Moore, 1989; Van der Kleij et al., 2015). For instance, in a 

study of high school algebra learners, Sleeman et al. (1989) applied two different approaches of 

providing feedback: model-based remediation (MBR) and reteaching. MBR offers “procedurally 

orientated remediation of specific errors found in a student’s solutions before reteaching a 

correct strategy” (Sleeman et al., 1989, p. 552). Reteaching refers to simply teaching the correct 

method again without addressing learners’ errors. While both approaches were more effective 

than no feedback, Sleeman et al. (1989) noted that MBR was not superior to reteaching.  

By systematically reviewing different types of feedback in programmed instruction, 

Jaehnig and Miller (2007) indicated that though more time is required for instructional design 

and learning, elaborated feedback is more effective than simply providing the correct response 

(KCR). According to a meta-analysis of feedback effects in computer-based learning 

environments (Van der Kleij et al., 2015), cognitive feedback with an explanation or other 

additional information for modifying learners’ misunderstanding (effect size 0.49) is more 

effective than cognitive feedback merely providing the correct answer (effect size 0.32) and both 

types of cognitive feedback are better than outcome feedback (effect size 0.05). Van der Kleij et 

al. (2015) also argued that elaborated cognitive feedback was more effective for higher order 

learning outcomes than KCR and outcome feedback. 

While many studies have discussed the effects of feedback of different complexities, 

researchers have not reached a consensus. Apparently, simply comparing the effectiveness of 

outcome feedback and cognitive feedback without considering learner characteristics and 

learning contexts is not sensible. Fifth graders who learn English vocabulary and college students 

who learn Java programming probably need feedback of distinct complexities. Furthermore, 
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cognitive feedback is difficult to define as the elaboration can be varied in different studies. As a 

common type of cognitive feedback, providing the correct response (KCR) seems to be 

consistently defined by different studies. However, offering the correct answer to a multiple-

choice question (e.g., Kulhavy & Stock, 1989) compared to a programming problem (e.g., 

Corbett & Anderson, 2001) may lead to different learning outcomes. How cognitive feedback 

works really depends on how much information it contains and how the information is presented. 

Thus, it is crucial to discuss and compare the influence of feedback’s complexity within a 

specific design and setting. However, researchers have reached agreement that providing 

feedback is better than no feedback for enhancing learning, and generally cognitive feedback 

seems superior to outcome feedback (Balzer et al., 1989; Butler & Winne, 1995; Hattie & 

Timperley, 2007; Van der Kleij et al., 2015). 

Source of Feedback 

Feedback can also be categorized as external and internal according to its sources. 

Traditionally, researchers have focused on feedback offered to students by an external source, 

such as a human or a computer (Bangert-Drowns et al., 1991; Corbett & Anderson, 2001; Van 

der Kleij et al., 2015). External feedback from teachers on tests or in a classroom setting is 

frequently discussed by researchers (Hattie & Timperley, 2007; Kulhavy & Stock, 1989) because 

teachers are usually the primary source of feedback. However, a new strand of research on 

feedback of peers has emerged (Lu & Law, 2012). As the popularity of formative assessment has 

grown rapidly, peer assessment has been considered as a potential way to effectively provide 

formative assessment (Gielen, Peeters, Dochy, Onghena, & Struyven, 2010; Sadler, 1989). Peer 

assessment, which refers to evaluating peers’ work and giving constructive feedback, consists of 

two components: peer grading and peer feedback (Lu & Law, 2012). Peer grading is the process 

in which assessors assign grades to peers’ work by applying criteria and standards; peer feedback 

refers to providing constructive comments on peers’ work. We may consider peer grading as 

outcome feedback from peers and peer feedback as cognitive feedback from peers. Though it is 

regarded as a reliable approach, peer grading alone is less effective than peer grading plus peer 

feedback (Liu & Carless, 2006; Lu & Law, 2012). In addition, peer feedback benefits both 

assessors and assessees (Gielen et al., 2010; Lu & Law, 2012). However, providing peer 

feedback seems to be more beneficial for enhancing understandings and improving learning than 
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simply receiving peer feedback (Li, Liu, & Steckelberg, 2010; Patchan & Schunn, 2015). 

Perhaps, this is because that students do not always take actions on implementing feedback 

(Nelson & Schunn, 2009), or they prefer adopting teacher feedback to accepting peer feedback 

(Yang, Badger, & Yu, 2006). 

In addition to humans, with the development of technology, computers have become 

another important source of feedback for learners. Since the 1960s, researchers have strived to 

build computer-based systems that can automatically provide effective feedback for learners 

(Anderson, Boyle, & Reiser, 1985; Smith & Sherwood, 1976; Ulloa, 1980). In these systems, 

students “receive essentially instantaneous reinforcement of correct work and assistance where 

they are having difficulty” (Smith & Sherwood, 1976, p. 334). There are two major types of this 

kind of learning system. The first type is usually called Computer Aided Instruction (CAI) or 

Computer-Based Instruction (CBI) and offers immediate feedback to learners based on their 

answers (VanLehn, 2011). The second type is often called Intelligent Tutoring System (ITS) and 

is “characterized by giving students an electronic form, natural language dialogue, simulated 

instrument panel, or other user interface that allows them to enter the steps required for solving 

the problem” (VanLehn, 2011, p. 198). The major difference between them is that CAI usually 

provides feedback such as a hint or a congratulatory message for the learner without scrutinizing 

the details of the response and the process of constructing the response, while an ITS typically 

offers concrete step-based feedback either during the problem-solving process or after the 

solution is submitted with specific supportive information based on the learner’s errors and 

(mis)understandings.  

Although some studies found that feedback offered by humans sometimes is more 

flexible and effective than that from a machine (Merrill, Reiser, Ranney, & Trafton, 1992; 

VanLehn et al., 2007), there are also researchers indicating that computer-provided feedback is 

as effective as human-provided feedback (VanLehn, 2011) and sometimes even leads to better 

learning rates and performance (Anderson et al., 1985). By comparing human tutors and ITSs, 

Merrill et al. (1992) noted that the effectiveness was similar when the computer systems could 

provide as much assistance as necessary like human tutors. As digital learning systems nowadays 

can capture a tremendous amount of learner data, applying data-driven techniques to give 

automated feedback to learners has become more feasible (Gerdes et al., 2017; Rivers & 

Koedinger, 2017). By analyzing errors a specific learner makes, data-driven learning systems are 
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able to offer customized feedback to the learner in order to help him or her correct errors and 

change misconceptions.  

In contrast to external feedback, internal feedback is generated by the learner and is 

crucial to self-regulation that “guides cognitive activities during which knowledge is accreted, 

tuned, and restructured” (Butler & Winne, 1995, p. 246). Hence, as an essential component of 

self-regulated learning, learners use internal feedback to set learning goals, monitor their 

progress, judge their performance relative to the goals, and act to reduce the discrepancies 

between goals and outcomes (Nicol & Macfarlane-Dick, 2006). Sadler (1989) argued that it is 

important to develop learners’ ability to assess their own work, appreciate high quality work, and 

generate internal feedback for closing the gap. As it is ubiquitous during the learning process, 

internal feedback is vital to the effectiveness of external feedback. A learner may generate 

internal feedback when he or she is working on a task or after receiving external feedback about 

his or her response. When external feedback such as outcome feedback provides minimal 

information about how to self-regulate, it may not lead to effective internal feedback and 

improved performance (Butler & Winne, 1995; Moos, 2011). Cognitive feedback, in contrast to 

outcome feedback, usually gives learners information that guides cognitive activities for locating 

and fixing the errors. However, no matter whether it is outcome or cognitive feedback, “students 

filter information provided by external feedback through knowledge and beliefs, applying 

conditional knowledge to identify cues” (Butler & Winne, 1995, p. 264). Hence, the 

effectiveness of the external feedback actually depends on the learner’s interpretation of the 

information based on their prior knowledge and beliefs, rather than the information itself. 

In general, internal and external feedback work together to improve learning performance 

and close the gap between the current and intended understandings (Merrill et al., 1992). In terms 

of feedback, learners should be considered as “having a proactive rather than a reactive role in 

generating and using feedback” (Nicol & Macfarlane‐Dick, 2006, p. 199). Therefore, when we 

design and provide feedback for learners, it is important to deliberate how external feedback will 

influence internal feedback and guide self-regulation.  

Models of Feedback 

As a number of factors may influence the effect of feedback on learning, including 

timing, complexity, and sources of feedback (Hattie & Timperley, 2007; Kulhavy & Wager, 
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1993; Van der Kleij et al., 2015), researchers have developed different models of feedback to 

explain how feedback facilitates learning and provide guidelines for designing effective 

feedback. Well-known models of feedback include the certitude model with a focus on learner 

response confidence (Kulhavy & Stock, 1989), the five-stage model emphasizing learners’ 

mindful reflection (Bangert-Drowns et al., 1991), and the connectionist model concentrating on 

the retention of initial lesson responses (Clariana et al., 2000). Each of these models mainly 

addresses one factor that may contribute to feedback’s effects, such as confidence (Kulhavy & 

Stock, 1989), self-regulation (Bangert-Drowns et al., 1991; Butler & Winne, 1995), and timing 

(Clariana et al., 2000).  

Recently, a more inclusive model, the visibility model of feedback, with an emphasis on 

visualizing learners’ current knowledge states, has been developed and become widely accepted 

(Hattie & Gan, 2011; Hattie & Timperley, 2007). Hattie and Timperley (2007) indicated that the 

previous commonly debated issues about feedback such as timing and complexity were mainly 

due to the lack of recognition of the various feedback levels. According to the visibility model, 

feedback is information for reducing “the discrepancy between what is understood and what is 

aimed to be understood” and is the most powerful when it makes learning visible to both the 

teacher and the learner (Hattie & Gan, 2011, p. 257-258). Visibility means that effective feedback 

needs to answer three major questions: “Where am I going?,” “How am I going?,” and “Where 

to next?” (Hattie & Timperley, 2007). In other words, procedures for designing effective 

feedback include (1) clearly describing the desired learning outcomes, (2) precisely analyzing 

learners’ current knowledge states, and (3) identifying the discrepancy between the current states 

and the intended outcomes and providing information for reducing the discrepancy and 

enhancing learning (Hattie & Gan, 2011; Hattie & Timperley, 2007). 

Feedback answering the three questions works at four different levels: task level, process 

level, self-regulation level, and self-level (Hattie & Gan, 2011; Hattie & Timperley, 2007). The 

task-level feedback provides information about the task or product, such as the learner’s 

performance on the task and additional task-related information (e.g., “Your answer is almost 

correct, but X in the problem is 3 not 5.”). It is commonly used in the classroom and usually is 

not generalizable to other tasks (Hattie & Gan, 2011). While providing task-related information 

typically is only effective for building surface knowledge, the acquisition of correct task-related 
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information is “a pedestal on which the processing and self-regulation is effectively built” 

(Hattie & Timperley, 2007, p. 91).  

Feedback aiming at the process level provides “task processing strategies and cues for 

information search” (Hattie & Gan, 2011, p. 260). For instance, a computer science teacher may 

tell a student, “Your program is working, but you did not use the correct variable types.” The 

teacher’s feedback offers cues for debugging the program to the student. Thus, feedback at 

process level is important for learners to detect errors and develop correct understandings. 

Though process-level feedback is powerful for enhancing deeper learning, it often interacts with 

task-level feedback as task information is vital to process the task (Hattie & Gan, 2011).  

Feedback at the self-regulation level aims at directing learners’ self-evaluation, boosting 

learners’ self-efficacy, increasing learners’ effort in task engagement, and improving other self-

regulated activities (e.g., “Your program is correct, but how can you revise it to improve its 

performance?”). It mainly tries to help learners develop skills of monitoring the learning process, 

evaluating the information provided, and reflecting on the learning outcomes (Hattie & Gan, 

2011).  

Self-level feedback is directed to the “self” without providing information about how to 

enhance the task performance or improve the product (e.g., “Well done”, “Good job”). As little 

task-related information is contained in such praise, only using praise often has little impact on 

achievement (Hattie & Timperley, 2007; Kluger & DeNisi, 1996). 

In summary, the core of the visibility model of feedback is to visualize the discrepancy 

between learners’ current understanding and the desired understanding. Hence, to design 

effective feedback, it is essential to clearly describe the learning goals and precisely understand 

the learner’s current progress, and then present information for closing the gap. Furthermore, the 

discrepancy should be visible for both teachers and learners (Hattie & Gan, 2011). For teachers, 

they need to know what challenges and difficulties students face so that they can provide 

appropriate feedback. For learners, they need to know what errors they have made and what the 

desired outcome is so that they may receive the feedback effectively and take actions to change 

their (mis)understandings and improve their responses. Finally, the visibility model proposes 

four levels of feedback and emphasizes that effective feedback needs to be designed and 

provided at the appropriate operational level(s) (Hattie & Gan, 2011). Hence, for different 
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learners (e.g., novices, experts) and different learning settings, feedback needs to include 

different levels of information (task, process, self-regulation, self, or combined).  

Summary 

Although historically researchers treated educational feedback as motivator or 

reinforcement of learning, nowadays they agree that feedback is information for facilitating 

learning (Hattie & Gan, 2011; Hattie & Timperley, 2007; Shute, 2008). Admittedly, feedback 

may lead to an increase in motivation or reinforcement of learning as consequences. In essence, 

it is information provided by an agent to change learners’ thinking or behavior for the purpose of 

enhancing learning (Hattie & Timperley, 2007; Shute, 2008). A variety of factors such as timing, 

complexity, and sources may influence the effects of feedback within different learning contexts 

(Hattie & Timperley, 2007; Kulhavy & Wager, 1993; Van der Kleij et al., 2015). According to 

the visibility model, the problem of traditional feedback design is that it neglects to examine 

learners’ current (mis)conceptions but simply provides corrective information for fixing 

superficial learner errors (Hattie & Gan, 2011). The new model of feedback requires scrutinizing 

learners’ erroneous responses, to grasp their positions on the trajectory towards the success of the 

learning goals, and provide corrective information targeted at addressing student misconceptions 

(Hattie & Gan, 2011; Hattie & Timperley, 2007). 

Student Misconceptions in Introductory Programming 

In the learning of programming, student misconceptions are students’ deficient or 

erroneous understandings of programming concepts (Qian & Lehman, 2017; Sorva, 2013; Taber, 

2013). In previous literature, a variety of terms have been used to describe students’ inaccurate 

understandings in learning to program, such as “misconceptions” (Sorva, 2013), “difficulties” 

(du Boulay, 1986), “errors” (Sleeman et al., 1986), “bugs” (Pea, 1986), “mistakes” (Altadmri & 

Brown, 2015), and so forth. With these different terms, researchers have discussed students’ 

syntax errors in the code, misunderstandings of programming concepts, difficulties in writing 

and debugging programs, and so on (Sorva, 2013). While various student misunderstandings and 

errors are often lumped together as “misconceptions,” qualitative differences exist between a 

simple syntax error in a loop statement, conceptual misunderstandings of loops, and challenges 

of using loop constructs to solve problems. However, these difficulties are related to each other, 
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and problems of students’ conceptual understandings are the pivot that may lead to syntactic 

errors, logic errors, and other difficulties (Bayman & Mayer, 1988; de Raadt, 2008; Ebrahimi 

1994; Lopez et al., 2008; Qian & Lehman, 2017). In this section, studies about student 

misconceptions and related difficulties in introductory programming are reviewed and organized 

by two themes including understanding and addressing student misconceptions. 

Understanding Student Misconceptions 

Introductory CS courses are difficult for beginners (Guzdial, 2015; McCracken et al., 

2001), and students often exhibit misconceptions that impede their learning of introductory 

programming (Altadmri & Brown, 2015; Sorva, 2013). Qian and Lehman (2017) summarized 

literature regarding common misconceptions and other difficulties in introductory programming. 

For instance, variables are a very basic concept in most of the programming languages, but 

novices may mistakenly believe that the computer understands variables by the English 

meanings of their names, even though variable names are arbitrary (Kaczmarczyk et al., 2010; 

Sleeman et al., 1986). Sequential execution of code is another challenging concept for beginners 

(du Boulay, 1986; Simon, 2011). For instance, students may mistakenly believe that when the 

Boolean expression of a conditional statement becomes true, even if this occurs twenty lines 

below the conditional statement, the program will go back and execute the code in that 

conditional block (Pea, 1986). High-level concepts such as classes, objects, instances, and their 

relationships in object-oriented programming (OOP) also often confuse students (Guzdial, 1995; 

Holland et al., 1997; Ragonis & Ben-Ari, 2005; Sorva, 2013). Ragonis and Ben-Ari (2005) 

conducted a two-year long study and identified 58 conceptions and difficulties students 

encountered in a high school introductory Java programming course.  

Students in introductory programming courses may also exhibit syntax errors when 

writing programs to solve problems. Researchers have cataloged common syntax errors of 

students in introductory programming (Altadmri & Brown, 2015; Hristova, Misra, Rutter, & 

Mercuri, 2003; Jackson et al., 2005; Sirkia & Sorva, 2012). After analyzing students’ 

compilation errors in a freshman Java course, Jackson et al. (2005) reported that the top three 

errors students made were forgetting variable declaration, missing semicolons, and using illegal 

start of expressions. In Java programming, a variable has to be declared before being used, but 

students often forget to declare variables. A semicolon is a required punctuation mark to end a 
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statement in Java, but beginners often forget to add it. The third error, using illegal start of 

expression, usually results from incorrect construction of Java expressions, such as using wrong 

punctuation marks in expressions. By analyzing millions of errors of students who learned Java 

programming using the BlueJ IDE, Altadmri and Brown (2015) provided a list of 18 common 

mistakes in Java programming and noted that mismatching parentheses, brackets, or quotation 

marks is the most common syntactic error. Another common novice mistake is incorrectly using 

the assignment operator (=) instead of the comparison operator (==) (e.g., if ( a = b )) (Hristova 

et al., 2003; Sirkia & Sorva, 2012). 

In addition, beginners usually lack well-established programming strategies (Clancy & 

Linn, 1999; Davies, 1993; Lister et al., 2006; Sajaniemi & Prieto, 2005; Soloway 1986) and then 

face difficulties with planning, composing, and debugging programs. Strategic problems include 

failing to understand and decompose the task (Muller, 2005; Robins et al., 2006), forgetting to 

test boundary conditions and unexpected cases (Fisler et al. 2016; Sajaniemi & Kuittinen, 2005; 

Spohrer & Soloway, 1986), and inappropriately tracing their code and locating errors (Ben-

David Kolikant & Mussai, 2008; Fitzgerald et al., 2008; McCauley et al., 2008). 

Qian and Lehman (2017) described factors that may contribute to students’ 

misconceptions in learning to program. Major factors that contribute to students’ misconceptions 

include interference caused by prior knowledge (Clancy, 2004; Miller, 2014) and flawed mental 

models of computer operation (Guzdial, 2015; Sorva, 2013). Novice students may mistakenly 

use concepts they learned in math to try to understand programming concepts (e.g., variables), 

which look similar but mean something quite different (Clancy, 2004; Qian & Lehman, 2017). 

As most programming languages are natural-language-based, students’ existing knowledge of 

natural language may hinder their construction of the meanings of programming concepts 

(Bruckman & Edwards, 1999; du Boulay, 1986; Miller 2014). In addition, unlike experts, 

beginners’ conceptual knowledge is often fragmentary and not organized into meaningful 

patterns (Clancy & Linn, 1999; Lister, 2011; McCauley et al., 2008; Sajaniemi & Prieto, 2005; 

Whalley et al., 2006). Thus, they may only be able to understand programs in a line-by-line 

manner and then fail to holistically evaluate and properly debug a program (Ben-David Kolikant 

& Mussai, 2008; Lister et al., 2006). Students in introductory programming courses also often 

hold flawed mental models of the notional machine, which refers to an abstract computer that 

executes code in the programmer’s mind (du Boulay, 1986; Guzdial, 2015; Sorva, 2013). 
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Without correct understanding of the notional machine, a student may fail to understand the 

sequential execution of statements (du Boulay, 1986; Simon, 2011). 

Addressing Student Misconceptions 

In computer science education, researchers and educators have developed various 

instructional approaches and tools to address students’ misconceptions in introductory 

programming. 

Instructional Approaches 

 Using program examples in instruction is one effective approach to address students’ 

understanding. Previous research revealed that using worked-out examples in instruction can 

improve students’ performance in solving problems (Ginat et al., 2011). Asking students to 

comprehend and explain example programs can help to disclose students’ misconceptions and 

develop their program composing and debugging skills (McCauley et al., 2008; Teague & Lister, 

2014; Vainio & Sajaniemi, 2007). Another approach is explicitly teaching programming 

strategies in introductory programming. de Raadt (2008) reported that after students received 

explicit instruction in programming strategies, they showed improvements in overall 

programming performance and better ability to apply programming strategies to solve problems. 

Muller et al. (2007) found that pattern-oriented instruction (POI) can help to reduce students’ 

cognitive load in programming and improve their ability to decompose problems and construct 

solutions. 

Other approaches include using a concept inventory (CI) (Goldman et al., 2010; Taylor et 

al., 2014; Tew, 2010) and Peer Instruction (PI) (Porter et al., 2013). A concept inventory is an 

assessment that aims to evaluate students’ understanding of a group of concepts (Goldman et al., 

2010; Tew, 2010). Using a concept inventory to evaluate students’ understanding of key 

programming concepts enables instructors to identify common misconceptions students have and 

then improve their instruction based on the misconceptions (Taylor et al., 2014). Another 

instructional approach is Peer Instruction, which focuses on engaging students in active learning 

of new concepts. It includes three steps: answering a question individually, having discussions 

with peers, and reconsidering the question again (Simon et al., 2010). Previous research on Peer 
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Instruction indicated that Peer Instruction can effectively improve students’ learning 

performance in introductory programming (Porter et al., 2013; Simon et al., 2010). 

Instructional Tools 

In computer science education, many programming environments and tools have been 

developed to address students’ misconceptions in introductory programming. Three major types 

of the instructional tools are novice programming environments, code visualization tools, and 

automated assessment systems. 

Novice Programming Environments 

Block-based programming environments such as Scratch (Resnick et al., 2009) and Alice 

(Dann, Cosgrove, Slater, Culyba, & Cooper, 2012) can prevent syntax errors and help novices 

develop a better understanding of programming concepts (Price & Barnes, 2015; Weintrop & 

Wilensky, 2015). Natural-language-like programming languages have also been developed to 

reduce learners’ programming errors and enhance learning performance (Bruckman & Edwards, 

1999). By embedding Whyline, a special designed debugging interface for novice programmers, 

Ko and Myers (2005) reported significant improvements in students’ debugging skills. 

Code Visualization Tools 

Code visualization tools are tools that can illustrate the process of code execution and 

variable states (Sorva et al., 2013). One well-known code visualization tool is Python Tutor 

(Guo, 2013), which was originally designed for visualizing the execution of Python code step by 

step and now supports other programming languages such as Java, JavaScript, TypeScript, and 

so forth. Another example is Greenfoot, which focuses on visualizing OOP concepts to help 

students better understand Java classes and objects and the execution flow of Java programs 

(Kölling, 2010). As beginners often hold problematic mental models of the notional machine, 

Sorva (2012) developed UUhistle that focuses on the visualization of the notional machine for 

Python programming. Because one important source of student misconceptions in introductory 

programming is their misunderstandings of code execution and problematic mental models of the 

computer system, code visualization tools have been helpful to support addressing certain 

student misconceptions (Sirkia & Sorva, 2012; Sorva et al., 2013). On the other hand, instructors 



www.manaraa.com

30 

 

should not assume code visualization tools can benefit all students in all teaching contexts, 

because these tools may also increase students’ cognitive load during learning (Guzdial, 2015; 

Sorva, 2012; Sorva et al., 2013). 

Automated Assessment Systems 

Automated assessment systems have also been widely used in introductory programming 

classes to support teaching and learning (Douce et al., 2005; Pettit, Homer, & Gee, 2017). An 

automated assessment system is a tool that can automatically evaluate the correctness of 

students’ programs and provide immediate feedback (De-La-Fuente-Valentín et al., 2013; Gerdes 

et al., 2017). With the student data, especially students’ erroneous programs, two types of 

feedback systems have been developed and integrated into automated assessment systems.  

The first type of feedback system uses artificial intelligence (AI) techniques to analyze 

students’ programs and generate personalized feedback for students (Barnes & Stamper, 2010; 

Rivers & Koedinger, 2017; Xu & Chee, 2003). With such an intelligent feedback component, an 

automated assessment system becomes an intelligent tutoring system that can not only grade 

students’ programs but also provide automated feedback. iSnap is an intelligent tutoring system 

that can automatically generate hints for Snap programming learners (Price, Dong, & Lipovac, 

2017). Price et al. (2017) reported that hints generated by iSnap were helpful to address simple 

problems in students’ code. While such systems seem to be an ideal solution to help teachers 

identify and address student misconceptions, they are not mature yet and can only handle simple 

programs.  

The other type of feedback system uses manually designed feedback messages for 

common student errors identified using the student data in the automated assessment system 

(Becker, 2016; Denny, Luxton-Reilly, & Carpenter, 2014; Pettit et al., 2017). Decaf is such a 

system (Becker, 2016). In a study of using Decaf to teach a Java-based CS1 class, Becker (2016) 

first used student data in the automated assessment system to identify 30 common compilation 

errors and then designed feedback by enhancing the raw Java error messages. His results showed 

that the 30 compilation errors accounted for 78% of all errors, and the group receiving feedback 

messages made 32% fewer errors than the group only seeing the raw Java compiler error 

messages. Prior studies on automated assessment systems with such feedback components have 

two issues. First, previous studies using this type of feedback component have only focused on 
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students’ compilation errors (Pettit et al., 2017). Second, the effectiveness of using enhanced 

compiler error messages as feedback is still questionable (Denny et al., 2014; Pettit et al., 2017). 

Summary 

Student misconceptions can interfere with learning of programming, and a variety of 

factors may contribute to these inaccurate understandings (Clancy, 2004; Qian & Lehman, 2017; 

Smith et al., 1994). While previous studies have cataloged a broad range of student 

misconceptions including syntax errors and other difficulties caused by misconceptions, most of 

them have focused on post-secondary students (e.g., Altadmri & Brown, 2015; Hristova et al., 

2003; Jackson et al., 2005; Sirkia & Sorva, 2012). In addition, researchers and educators have 

developed various instructional approaches and tools to address students’ misconceptions in 

introductory programming. Of particular interest for this study is the development of automated 

assessment systems that can automatically assess students’ programs and provide immediate 

feedback to help students learn (Douce et al., 2005; Gerdes et al., 2017). While many automated 

assessment systems have been developed and tested by researchers, most systems to date either 

provide feedback based on compiler errors (e.g., Becker, 2016) or provide direct feedback for 

correcting simple errors in code (e.g., Gerdes et al., 2017). 

Contribution of this Study 

This study implemented a data-driven approach to identify secondary school students’ 

misconceptions in introductory programming using both their compilation and test errors and 

provide targeted feedback to promote students’ conceptual change. While previous studies have 

investigated a broad range of student misconceptions, most of them have focused on post-

secondary students. As CS education has been expanding into K-12 schools, more information is 

needed to understand misconceptions among pre-college learners such as high school students 

who take introductory programming courses. Second, although previous studies in computer 

science education have discussed student misconceptions from a variety of perspectives, little 

work has drawn on our understanding of evolutionary conceptual change and appropriate use of 

data-driven feedback to promote conceptual change. Finally, while many automated assessment 

systems have been developed and tested by researchers, most systems to date either provide 

feedback based on compiler errors (e.g., Becker, 2016) or provide direct feedback for correcting 
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simple errors in code (e.g., Gerdes et al., 2017). This study focused on analyzing both 

compilation and test errors in students’ programs to understand and address student 

misconceptions. 
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CHAPTER 3: METHODOLOGY 

The purpose of this study was to examine secondary school students’ common 

misconceptions in introductory programming and investigate how feedback affected the 

evolution of students’ (mis)conceptions using a data-driven approach. A two-stage exploratory 

design-based study was implemented. In the first stage, common misconceptions exhibited by 

students in solving programming problems using an automated learning system were identified. 

In the second stage, targeted feedback designed to address identified misconceptions was 

integrated into the automated learning system, and the effects of the use of that feedback with a 

new group of students were assessed. This section introduces the overarching methodological 

framework, settings and participants, and research procedures of conducting the study. 

Methodological Framework: Design-Based Research (DBR) 

This study used design-based research (DBR) (Anderson & Shattuck, 2012) as the 

overarching methodological framework. DBR is a methodology that guides the design, 

implementation, evaluation, and refinement of interventions to complex educational problems in 

real educational contexts (Anderson & Shattuck, 2012; Brown, 1992; McKenney & Reeves, 

2014). DBR studies seek to simultaneously solve real-world problems in classroom settings and 

develop principles or theories for helping others facing similar situations (Anderson & Shattuck, 

2012; McKenney & Reeves, 2014). The iterative process of conducting a typical DBR study 

includes analyzing problems, designing solutions, evaluating solutions, and reflecting on the 

results (McKenney & Reeves, 2014).  

This study was aimed at solving a complex practical problem in classroom teaching and 

contributing to a theory of learning at the same time. DBR is a methodology that guides such 

studies (Brown, 1992; McKenney & Reeves, 2014). Understanding and addressing student 

misconceptions is complicated but important to classroom teachers. However, innovative 

interventions from traditional controlled laboratory settings often face challenges when 

transferred to real world classrooms (Brown, 1992). Therefore, this study adopted DBR as the 

methodological framework, which suggests iteratively designing, testing, and improving the 

intricate solution in classroom settings. 
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Settings and Participants 

The research subjects in this study were two groups of high school students enrolled in 

two sections of a Java-based programming course as part of a 2017 summer residential program 

for gifted and talented students. 

The Summer Residential Program and Courses 

The setting for this study was a summer residential program that has been offered by 

Gifted Education Resource Institute (GERI) at Purdue University for more than four decades. 

The goal of this program is to help gifted and talented students from across the country and 

around the world develop their talents and expand their abilities. The 2017 summer program was 

held from July 2 to July 29, 2017 and consisted of two two-week sections. Section 1 was from 

July 2 to July 15, 2017. Section 2 was from July 16 to July 29, 2017. The fee to attend one 

section of the summer residential program was $2,400.  

Participating students could choose to attend only one section or both. During a given 

section of the summer program, each student could select a morning class and an afternoon class 

based on his or her grade level. Three levels of classes for students of different grades were 

offered, including Comet classes for students who had completed grade 5 or 6, Star classes for 

students who had completed grade 7 or 8, and Pulsar classes for students who had completed 

grade 9, 10, 11, or 12. At the end of each class in a section, instead of receiving a grade, every 

student received a general evaluation of his or her thinking skills, social skills, and self-

regulation exhibited in class. 

The introductory Java-based programming class in this study was called Programming 

and Computational Thinking, and was offered to Pulsar students in both sections of the summer 

residential program (Pulsar 1 and Pulsar 2) in the morning from 8:30 to 11:30 every weekday. 

The researcher was the instructor of the introductory Java programming course. The major topics 

covered in this course were Program Structure, Input/Output (I/O), Variables and Operators, 

Conditionals, and Loops. Appendix A presents the course syllabus. The IDE (integrated 

development environment) used in the class was DrJava (version: drjava-20160913-225446). 

The JDK (Java SE Development Kit) version was JDK 8. 
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Typically, during every class session, the instructor started with a 30-minute lecture to 

review previously learned content (e.g., Input and Output methods in Java) and introduce new 

course content (e.g., the syntax of using Conditionals). After the lecture, the instructor used 

worked-out examples to show how to solve problems with the programming statements students 

had learned about. When the demonstration was done, students had about an hour to solve 

problems individually using the automated assessment system Mulberry. After the topic of 

Loops was introduced, students started individual and team projects based on their choices (e.g., 

design a text-based interactive game). 

Participants 

Participants in this study were two groups of high school (Pulsar) students, a total of 25, 

who took Programming and Computational Thinking in two different sections of the summer 

residential program. The student recruitment was conducted by GERI. To be accepted by this 

summer residential program, students had to be identified as high ability according to the GERI 

criteria. First, students completed an application form and wrote a statement of purpose 

explaining their desire and motivation to participate this program. Second, students were 

required to provide two of the following documents to demonstrate their talents: “a) a transcript 

showing a GPA of 3.5/4.0 in the talent area; b) an intelligence test report with a minimum score 

of 120; c) national achievement or aptitude test results at or above the 90th percentile in a 

specific area of study; d) a recommendation letter from a teacher or mentor in the talent area; e) 

documentation of involvement in the talent area” (GERI Website, 2018).  

Group 1 of this study (Pulsar 1) originally had 15 students, and group 2 (Pulsar 2) had 10 

students. However, one student of group 1 was found to have cheated when solving problems, so 

that the student’s problem solutions were not an accurate measure of performance. Another 

student of group 1 was the champion of a programming competition in his hometown who 

solved all the problems in Mulberry within two days and so was considered an outlier in terms of 

knowledge and ability. Therefore, these two students were not considered as participants of this 

study and were excluded from the data analysis. In the end, the participants of this study were 13 

students (9 boys and 4 girls) in group 1 (Pulsar 1) and 10 students (7 boys and 3 girls) in group 2 

(Pulsar 2).  



www.manaraa.com

36 

 

Mulberry System 

Mulberry is a programming learning system designed for Java learners and developed by 

the author. It has a pool of 51 programming problems, and students are required to write short 

programs to produce the correct output to solve the problems. Every problem has several test 

cases, which are pairs of input data and expected output. Mulberry automatically assesses 

students’ solutions to each problem by using test cases and comparing the output of their 

programs with the expected output. A student solution is considered as correct when its output 

matches the expected output for all the test cases. When a student submits a program producing 

the incorrect output, he or she receives immediate feedback from the system and can try multiple 

times until his or her solution is correct. Mulberry collects all the programs from students when 

they attempt to solve the problems. Figure 3.1 shows the major user interface (UI) of Mulberry 

where students can read the problem description and submit the solution. The development of 

feedback for the system to address students’ misconceptions is described later in this chapter. 

 

Figure 3.1. User Interface (UI) of Mulberry 
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Procedures 

Overview 

This exploratory DRB study consisted of two stages (see Figure 3.2). In the first stage 

(July 2 to July 15, 2017), students of group 1 took the introductory programming class. Mulberry 

was integrated into instruction and collected data on student problem-solving attempts. After the 

first group’s course ended, data analysis was conducted to identify common programming 

misconceptions students demonstrated in their programs to answer RQ 1. In the second stage 

(July 16 to July 29, 2017), targeted feedback to address these misconceptions was designed using 

principles from conceptual change and feedback theories (diSessa, 2014; Hattie & Gan, 2011; 

Vosniadou & Skopeliti, 2014) and added to Mulberry. When students of group 2 took the same 

introductory programming class and solved programming problems in Mulberry, they received 

the targeted feedback to address their misconceptions. After the second group’s course ended, 

data analysis was conducted to assess how the feedback affected the evolution of students’ 

(mis)conceptions to answer RQ 2. This study was approved as exempt from Institutional Review 

Board (IRB).  

Stage 1 

The goal of the first stage of the study was to identify common programming 

misconceptions students exhibited in their programs to address RQ 1. In this stage, students of 

group 1 took the introductory programming class and used Mulberry to practice their 

programming skills. Each problem in Mulberry was related to one or more of programming 

concepts covered in the course. Specific test cases of each problem were designed to reveal 

student misconceptions.  

Figure 3.3 shows an example problem in Mulberry and its test cases. In this problem, 

students needed to write a program that used Heron’s Formula to calculate the area of a triangle. 

Design Test Cases
Students of Group 1 

Use Mulberry

Analyze Data and 

Identify 

Misconceptions

Design and Develop 

Targeted Feedback

Students of Group 2 

Use Mulberry

Analyze Effects of 

Feedback

Stage 1

Stage 2  

Figure 3.2. Timeline of the study 
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The link to a webpage that explains details about Heron’s Formula was given (see Figure 3.4 for 

a screen shot of the webpage). In addition, the problem description gave examples of test cases 

which were similar to the real test cases in the backend. When a student submitted a solution to a 

problem, Mulberry used the test cases of the problem to automatically assess the correctness of 

the solution by comparing the output of the solution with the expected output. When students had 

errors in their solutions, they were told that errors existed in their code and were encouraged to 

try again. Mulberry collected every student’s solution no matter whether it was correct or 

erroneous. 

When group 1 of summer 2017 completed the course, they produced 695 problem 

solution attempts in total. Because the number of student solutions in group 1 was relatively 

small, to obtain a more complete understanding of common student misconceptions, student 

solutions of group 1 were combined with previous student solutions in Mulberry produced by 

three groups of students who took this class in summer 2016. The problem solutions generated in 

summer 2016 came from two groups of Pulsar students and one group was Star students (who 

had completed grade 7 or 8). In total, these three groups had 42 students who produced 4178 

solutions. Thus, for the final analysis of misconceptions, 4873 student solutions from 55 students 

 

Real Test Cases in the Backend: 

Input: 3 4 4   Expected Output: 5.56 

Input: 7 8 9   Expected Output: 26.83 

Input: 12 13 5  Expected Output: 30.00 

Figure 3.3. Example problem Area of Triangle and its test cases 
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were pooled for the identification of common student misconceptions. The following section 

describes details about how common student misconceptions were identified. 

Data Analysis 

An erroneous student solution in Mulberry may have had either compilation errors or test 

errors. When a solution had compilation errors, it failed to compile and produced a compilation 

error message. In other words, its output was the error message and thus failed to match the 

expected output. When a student solution was successfully compiled but produced output that 

did not match the expected output exactly, it was an erroneous solution with test errors. When 

different students made the same compilation or test error in their solutions, they might have a 

common misconception. Therefore, analysis was conducted to find the common compilation and 

test errors first. Next, based on the common errors, common student misconceptions were 

identified and discussed. As compilation errors are cross-problem while most test errors are 

problem-specific, common compilation and test errors were analyzed in different ways. 

 

Link: http://www.mathsisfun.com/geometry/herons-formula.html 

Figure 3.4. A screen shot of the webpage explaining Heron’s formula 
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Compilation Errors 

A compilation error is a mistake found by the compiler when compiling a program. The 

Java compiler will produce error messages describing the compilation error(s) a program has. A 

program may have more than one compilation error. Programs for solving different problems 

may contain the same compilation errors (e.g., missing semicolons). In this study, when at least 

20% of the students showed the same compilation error in their solutions, that compilation error 

was defined as a common one. In other words, a common compilation error was one that 

occurred in solutions from at least 11 different students (20% of 55). 

After common compilation errors were collected, example student code related to these 

errors was analyzed to identify common student misconceptions. For instance, one common 

compilation error is called possible loss of precision, which occurs when assigning a value of 

higher precision to a variable of lower precision. This error indicates students’ problematic or 

incomplete understanding of the concept Variables. Students may have the misconception that 

variables in Java programming are the same as variables in math that do not have a specific type 

and have unlimited precision. In addition, when several common compilation errors suggested 

the same misconception, they were combined in the analysis. For example, the common 

compilation error reached end of file is typically caused by a missing closing brace }, and 

another common compilation error ) expected is usually caused by a missing closing parenthesis. 

While they are different errors, they both indicate students’ misunderstandings or 

misapplications of the concept Program Structure, specifically Java Punctuation. 

Test Errors 

A test error occurs when a student solution has no compilation error but produces output 

that does not match the expected output given the designed test cases as the input. Because every 

problem has its own test cases and expected output, test errors are problem-specific. Figure 3 

shows the test cases and expected outputs for each test case of the problem Area of Triangle. 

For example, when the test case (input) is 3 4 4, a correct student solution should produce the 

output 5.56. If the student solution outputs something like 5.562148865321747, it means that the 

student solution has a test error that is failing to display only 2 decimal places of the result as 

described in the problem. When using the other two test cases of the problem Area of Triangle, 
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the outputs will be similar (with wrong number of decimal places). These were not considered as 

different test errors, because they are caused by the same problem of the solution: failing to keep 

two decimal places of the result. Hence, one erroneous student solution can only have one test 

error. 

For the same problem, sometimes different test errors can be identical in essence. For 

example, the problem Say Hi to Anyone expects students’ solutions to produce output like 

“Hello, Mike!”. Some student solutions omitted the comma (,) in the output while a few students 

omitted the exclamation mark (!). Although the different outputs made them two different test 

errors, in essence they were identical: missing required punctuation in output. Such test errors 

were combined in the analysis of common test errors. Moreover, test errors of different problems 

may also point to the same misconception. For example, failing to keep two decimal places of 

the result was a common test error in two problems, Area of Triangle and Area of Circle. In the 

analysis, these kinds of test errors were treated individually first. They were combined, however, 

when discussing the underlying misconceptions. 

As test errors are related to specific problems, the first step in collecting common test 

errors was to select difficult problems. A difficult problem was defined as a problem solved by 

50% or more students (at least 28 students) but with a problem correct rate lower than 50%. 

When a student solved a problem, his or her correct rate of solving that problem was named the 

student correct rate of problem and was calculated by the following formula:  

𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 =
1

the number of a student′s solutions to the problem 
 

The problem correct rate was defined as the correct rate for each problem and was 

calculated by the following formula: 

𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑎𝑡𝑒 =
∑ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚

the number of students who solved the problem 
 

If a problem was only solved by one or two students, the errors in the students’ solutions 

may not reveal common misconceptions. If a problem was solved by most of the students but 

with a high problem correct rate (e.g., 80%), there may not be enough information for 

identifying misconceptions. Hence, this exploratory study only focused on difficult problems. 

Using the rules above, the problem Area of Triangle, for example, was identified as a difficult 

problem. It was solved by 44 students (80% of the students) with a problem correct rate of 34% 
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(indicating students had many incorrect attempts before solving the problem). In the end, there 

were 9 difficult problems identified in this study (see details in the Results section). 

For each difficult problem, a test error was considered common when at least 20% of the 

students who solved the problem showed the same test error. For example, 44 students solved the 

Area of Triangle problem, and 22 of them (48%) showed the same test error that produced the 

wrong output 3.16 when the input was 3 4 4. While students might have written very different 

incorrect solutions, their key errors were identical. Figure 3.5 illustrates two solutions that were 

written by two different students but produced the same wrong output 3.16. In these cases, both 

students failed to recognize that the result of the expression (a+b+c) / 2 would be an integer 

without decimal values. Common test errors appearing in student solutions to difficult problems 

Solution #1 

 

Solution #2 

 

Figure 3.5. Two different students’ solutions producing the same wrong output 
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were used to identify the common misconceptions. For example, the misconception in this 

example is that students had a problematic understanding of the Java division operator. 

While completed data analysis was not conducted until the first group finished the course, 

partial data analysis was conducted throughout stage 1. For example, when all the students had 

solved programming problems about the topic Input/Output (I/O) in Mulberry, partial data 

analysis of students’ solutions to those problems was conducted to estimate potential 

misconceptions. Potential feedback for addressing these misconceptions was also developed 

during this process. 

Stage 2 

The goal of the second stage was to assess how feedback affected the evolution of 

students’ (mis)conceptions to address RQ 2. Before students of the second group started the 

class, targeted feedback messages to address student misconceptions identified in stage 1 were 

designed using principles from conceptual change and feedback theories (diSessa, 2014; Hattie 

& Gan, 2011) and added to Mulberry. Because common student misconceptions were identified 

based on common compilation and test errors in student solutions, targeted feedback was 

designed and provided for every common compilation or test error. However, when several 

common errors were related to the same misconception, the targeted feedback for addressing 

them was identical or similar. In addition, feedback for addressing common compilation errors 

and common test errors was also designed differently.  

Feedback for Compilation Errors 

As compilation errors are not specific to particular problems, targeted feedback for 

addressing them contained general information about possible problems in the student’s solution 

and potential ways of improving the solution. For instance, the ; expected error was typically 

caused by missing required semicolon(s), and students received the following targeted feedback 

message in Mulberry: 
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Because compilation errors can be detected by the IDE students used, drJava, on their 

local machine, a general feedback message telling students to test their solutions in drJava before 

submitting them to Mulberry was provided for common compilation errors followed by the 

targeted feedback message. In addition, the raw error message from the compiler, which was the 

only feedback message group 1 students received, was also provided. The following is the full 

feedback message group 2 students received in Mulberry when they had the common 

compilation error ; expected. 

 

When several common compilation errors were caused by similar mistakes and related to 

the same misconception, the same feedback message was provided. For example, the common 

compilation errors reached end of file and ) expected are both about mismatched or missing 

Java separators that should be used in pairs. Therefore, the following feedback message was 

provided for both of them as well as two other similar common compilation errors.  

 

The common compilation error { expected seems to be a similar error, but its cause may 

be very complicated and often is irrelevant to a missing opening brace {. In order to not mislead 

students, no targeted feedback was designed and provided for the { expected error.  

Finally, compilation errors are not always precisely caught by the compiler and described 

in the compiler error message. For example, mistakes such as missing a single semicolon, 

missing braces, or missing the right-hand side of an assignment statement may all result in the 

common compilation error illegal start of expression. More importantly, when this error exists, 

the compiler error message often points to perfectly good code. Therefore, for such errors, the 
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following general feedback message was provided. In the end, 15 common compilation errors 

were collected, and eight unique feedback messages were designed for them (See details in the 

Results section). 

 

Feedback for Test Errors 

Targeted feedback for addressing common test errors was designed to contain 

information regarding the specific problem and potential ways of improving the solution. For 

example, when a student solution to the Area of Triangle problem had the common test error 

illustrated in Figure 3.5, he or she received the following feedback message: 

 

This feedback message was designed to let students know the current status of their 

solution and provide guidance about how to fix the error. Other feedback messages for 

addressing common test errors were designed and provided in a similar way. 

Among the 9 difficult problems, two of them (the Arithmetic Operations problem and 

the Sort Three Integers problem) did not show common test errors, and no feedback was 

designed for addressing them. The most common test error of the How Old Are We? problem, 

Mismatched input, did not meet the common test error standard of this study; however, because 

its underlying misconception was the same as the common test error Mismatched input of the 

problem Sum of Digits, the feedback message for addressing it was added. In the end, 10 
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common test errors were identified, and 10 unique feedback messages were designed for them 

(see details in the Results section). 

Data Analysis 

After targeted feedback was added to Mulberry, students of the second group received 

feedback messages when their solutions exhibited an identified common error. After the second 

group’s course ended, both quantitative and qualitative data analysis were conducted to see 

whether and how the targeted feedback made a difference in students’ solutions and so may have 

contributed to conceptual change. 

Quantitative Data Analysis 

The goal of the quantitative analysis was to check whether the targeted feedback had 

positive effects on conceptual change. In order to check the effects of feedback, erroneous 

student solutions of both group 1 and 2 were categorized into two types: improved and not 

improved. When the next solution of an erroneous solution for solving the same problem was 

correct, this means that the student had improved this erroneous solution. Hence, this solution 

was labelled as improved. When an erroneous solution had compilation errors, and its next 

solution was successfully compiled but failed to pass the test, this also means that the student had 

improved this erroneous solution, because at least the compilation errors were fixed. Such 

erroneous solutions were also labelled as improved. When an erroneous solution had compilation 

errors, and its next solution also had compilation errors, it was labelled not improved. When an 

erroneous solution had test errors, and its next solution had compilation or test errors, it was also 

labelled not improved.  

After the categorization was done, three different kinds of improvement rates were 

calculated and compared. First, overall improvement rates of both groups were calculated, which 

were the proportion of improved solutions. Second, each group’s improvement rate of solutions 

with common errors was calculated, which was the proportion of improved solutions among the 

solutions with common errors. Third, for group 2, improvement rates of solutions with and 

without feedback were calculated, which were the proportion of improved solutions among the 

solutions with and without feedback respectively. Chi-square tests were conducted to see 

whether the differences in improvement rates were statistically significant. 
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Qualitative Data Analysis 

The goal of the qualitative analysis was to understand how targeted feedback affected the 

evolution of students’ (mis)conceptions. Analyzing students’ programs qualitatively is vital to 

complement quantitative analysis and provide further insights into students’ conceptual 

understandings (Fields, Quirke, Amely, & Maughan, 2016). Four feedback cases were selected 

for the qualitative analysis. The case selection was based on the following procedures. First, for 

each feedback message, an improvement rate was calculated by using the following formula: 

𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 =
the number of improved solutions with the feedback

the number of occurrences of the feedback 
 

Feedback messages with the best and worst improvement rate were selected as cases. 

Cases for compilation errors and test errors were selected separately, so four cases were selected. 

As certain feedback messages only occurred once or twice, and their improvement rates were 

either 100% or 0%, case selection only used the feedback messages with an above-average 

number of occurrences. 

When the cases were selected, student solutions of both group 1 and 2 were extracted 

from the Mulberry database. While students of group 1 did not receive any feedback (other than 

standard compiler messages), their solutions that had the same error as students in group 2 who 

got the targeted feedback were used. The patterns of evolution of (mis)conceptions of students 

from group 1 and group 2 were compared in detail to determine if targeted feedback affected 

conceptual change as demonstrated via their solutions. Figure 3.6 shows an example of how a 

student revised his or her solutions to the Area of Triangle problem. In Solution #1, the student 

encountered a syntax error, because the return value of the Math.sqrt() method is a double rather 

than an integer. In Solution #2, the student fixed the syntax error but still mistakenly used integer 

type variables to store possible double values. In Solution #3, the student figured out the variable 

type issue but still did not recognize the expression “(a+b+c) / 2” would return an integer and 

lose precision. Solution #4 is correct. Qualitative analysis like this can lead to an understanding 

of the evolution of student (mis)conceptions as they actively worked to solve a problem. If 

targeted feedback were provided when the student submitted Solution #2 and his or her next 

solution were correct, this suggests that the feedback might have affected conceptual change. 
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Solution #1                                                    Solution #2 

 

 

Solution #3                                                    Solution #4 

Figure 3.6. A student’s solutions to the Area of Triangle problem 
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CHAPTER 4: RESULTS 

Identification of Misconceptions 

Common Compilation Errors 

To address RQ 1, students’ erroneous problem solutions were analyzed to identify 

common errors and specific misconceptions. Among the 4873 student solutions from the 55 

students (13 students of group 1 and 42 students of summer 2016), 3632 solutions were 

incorrect. Solutions with compilation errors numbered 1752, and solutions with test errors were 

1880. Among the 1752 compilation-erroneous solutions, there existed 2335 compilation errors. 

By grouping the same compilation errors, 55 distinct compilation errors were identified, and 15 

of them were categorized as common ones. The 15 common compilation errors occurred 2151 

times in total and accounted for 92% of all compilation errors. Table 4.1 presents these common 

compilation errors. The “CE” in the error number stands for “Compilation Error.” Additional 

information in the table includes the error name, and the occurrence rate. The occurrence rate is 

the number of students who made the error and the percentage out of the 55 total students. 

Four error names were simplified from the actual compiler error messages. The program 

name error was originally described as something like “public class Abc should be in a file 

named Abc.java.” It was caused by the mismatch between the program’s name (the name of the 

class) and the program file name, so it was renamed into the simpler version “program name 

error.” The class expected error was originally called “class, interface, or enum expected.” As 

interfaces and enums were not introduced and used in this course, it was renamed into “class 

expected” for short. The reached end of file error was a short version of the original error 

message “reached end of file while parsing.” The incorrect use of operators error was a 

revision of the original compiler error message “bad operand types for binary operator.”  

Based on the 15 errors, three common misconceptions were identified. The following 

section provides the details about the common compilation errors and underlying 

misconceptions. 
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Table 4.1 

Common Compilation Errors 

# Error Occurrence 

CE1 cannot find symbol 50/55 (91%) 

CE2 ; expected 48/55 (87%) 

CE3 program name error 48/55 (87%) 

CE4 class expected 40/55 (73%) 

CE5 reached end of file 37/55 (67%) 

CE6 not a statement 31/55 (56%) 

CE7 ) expected 29/55 (52%) 

CE8 illegal start of expression 29/55 (52%) 

CE9 identifier expected 24/55 (44%) 

CE10 incompatible types 23/55 (42%) 

CE11 variable is already defined 19/55 (35%) 

CE12 incorrect use of operators 15/55 (27%) 

CE13 illegal start of type 13/55 (24%) 

CE14 { expected 13/55 (24%) 

CE15 possible loss of precision 13/55 (24%) 

 

 

1 import java.util.Scanner; 
2  
3 public class ExampleOne { 
4     public static void main(String[] args) { 
5  
6         Scanner sc; 
7         sc = new Scanner(System.in); 
8          
9         int a = sc.nextInt(); 
10  
11         if(a > 0) { 
12             System.out.println(a + " is a positive number."); 
13         } 
14         else { 
15             System.out.println(a + " is not a positive number."); 
16         } 
17     } 
18 } 

 

Figure 4.1. An example Java program 
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Misconception 1: Deficient Knowledge of Fundamental Java Program Structure 

Seven of the 15 common compilation errors were related to fundamental Java program 

structure, including CE2, CE3, CE4, CE5, CE7, CE9, and CE14. To explain these errors clearly, 

Figure 4.1 shows an example Java program, which reads an integer as input and decides if the 

integer is positive.  

CE2: ; expected typically resulted from the missing semicolon (;) at the end of a 

statement. In Java, every statement must end with a semicolon (see line 9 in Figure 4.1 for an 

example). However, many students forgot this convention when writing programs and failed to 

include the necessary semicolons. 

CE3: program name error occurred when a student program’s name (the name of the 

class) did not match its file name. A Java program must define a class and be saved in a file with 

the same name as the class name followed by the extension .java. The example program in 

Figure 4.1 defines a class called “ExampleOne”, so it should be saved in a file called 

“ExampleOne.java”. When solving a problem in Mulberry, the required program name was 

given in the problem description. However, when submitting solutions, many students did not 

use the required class name or misspelled the class name. For example, the required program 

name of the problem Area of Triangle was “AreaOfTriangle”, but several students used 

“AreaofTriangle”. Though these two names look similar, Java is case sensitive and requires an 

exact match of the program name and the file name. 

Three errors (CE4, CE5, and CE14) were related to unbalanced braces {}. In Java 

programming, braces are used to group statements into code blocks. For example, the opening 

and closing braces in line 3 and 18 in Figure 4.1 enclose all the statements of the class 

ExampleOne and define the class content block. CE4: class expected indicated an incorrect class 

definition and was mainly caused by a missing opening brace { in the class definition line. As 

the Java compiler was expecting a correct class definition but an incorrect one was given, it 

reported this error. On the contrary, CE5: reached end of file typically resulted from a missing 

closing brace }. As the compiler could not find the closing brace the end of the program, this 

error occurred. CE14: { expected indicated a missing opening brace in the code. In this study, 

only a few times was this error truly caused by a missing opening brace. Many times, it resulted 

from having redundant punctuation when defining a class. Some students had punctuation marks 

such as comma and space in the class name. A few students added punctuation marks such as a 
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semicolon after the class name. In all these cases, the Java compiler interpreted the code as 

meaning that the class name ended before those punctuation marks and was expecting an 

opening brace {, and thus CE14 occurred.  

CE7: ) expected was mainly caused by missing the closing parenthesis ). In Java, 

parentheses () are used to control the order of expression evaluation or enclose parameters of a 

method. Parentheses marks must be used in pairs. However, students in this study often omitted 

the closing parenthesis in their code. This error sometimes also occurred when the parentheses 

were balanced but the expression within the parentheses was erroneous. For example, line 2 and 

3 in Figure 4.2 also led to CE7: ) expected, because the Java compiler could not evaluate the 

expression after the opening parenthesis and failed to locate the closing parenthesis. 

CE9: identifier expected indicated that an identifier did not appear where it should. In 

Java, identifiers are the names used as labels, including variable names, class names, method 

names, and so forth. While this seemed to be relevant to missing identifiers, in this study, most 

of the time it was caused by unbalanced braces. A Java program may have some data members 

(e.g., a class variable) and methods (e.g., the main method). Identifiers are necessary to define 

the data members and methods. In Figure 4.1, line 4 defines the main method of the class. The 

opening brace in the method definition line indicates the start of the main method, and the 

closing brace in line 17 means the end of the method block. When a student missed the opening 

brace of the main method, the compiler interpreted all the code within the main method block as 

statements for defining data members or methods. Thus, the compiler was expecting identifiers, 

but other types of code were given (e.g., a method call System.out.println). Omitting the opening 

brace of a code block (e.g., the opening brace in line 11 of Figure 4.1) or having extra closing 

braces somewhere in the main method might also lead to this error. In both cases, an extra 

closing brace mistakenly indicated the end of the main method block and made code after it part 

of other data member and method definitions. Hence, CE9 occurred when the complier could not 

find the expected identifiers. In addition, several students completely omitted the main method in 

their program and directly enclosed statements in the class definition block. This also produced 

this error. 
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Misconception 2: Misunderstandings of Java Expressions 

Three of the 15 common compilation errors were related to incorrect use of Java 

expressions, including CE6, CE8, and CE13. A Java expression is made up of variables, 

operators, and method calls, and evaluates to a single value. Expressions are major components 

of statements. In this study, students often constructed expressions without following Java proper 

syntax.  

CE6: not a statement error occurred when the compiler was expecting a syntactically 

correct statement but something else was given. It typically resulted from syntactically incorrect 

expressions within a statement. Figure 4.2 presents several examples of this error from students’ 

code. In line 2, the expression within the parentheses is wrong because this student forgot to put 

the output message “Don't Worry!” within quotation marks. In line 3, the expression within the 

parentheses could not be evaluated to a value as it failed to concatenate the variables m and n and 

the string literal “+” using plus signs (+). In line 5, the Java keyword final was used as the 

variable name in the assignment expression which is not allowed in Java. In line 6, the student 

reversed the order of the value (3.14) and the variable (pi) in the assignment expression. In line 

7, the variable name of the assignment statement was missing which made the statement 

incomplete. Code in line 9 and 10 made the same error: using illegal mathematical notations in 

Java expressions. While brackets may be used to enclose parentheses in mathematical 

expressions, brackets and parentheses in Java have different meanings, and extra layers of 

parentheses should be used when necessary. In line 9, brackets should be replaced by parentheses 

1 //Some lines have more than one error 
2 System.out.println(Don't Worry!); 
3 System.out.println(m "+" n "=" + sum); 
4  
5 String final = String.format("%.2f", area); 
6 double 3.14 = pi; 
7 double = (n+m); 
8  
9 int a = [(n-n/3)*3]/n; 
10 d = a + 0.1a + 0.01a; 
11  
12 String result = String.format("%.2f, area); 
13 System.out.println(result); 

 

Figure 4.2. Examples of erroneous code about expressions 
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to make the expression correct. In line 10, the multiplication operator (*) must be included even 

though it would not be required in a math expression. 

CE8: illegal start of expression usually resulted from having erroneous expressions in 

the code. Line 5 and 9 in Figure 4.2 are two examples of illegal expressions. This error also 

occurred when a correct expression was placed in a wrong location. For example, the import 

statement should be put before the class definition (see line 1 in Figure 4.1), but a few students 

placed it in the class block. While they wrote the import statement correctly, the Java compiler 

considered it as an inappropriate statement. Another situation that led to this error was that 

something was wrong (e.g., unclosed quotation marks, parentheses, and braces) before a correct 

expression. In line 12 of Figure 4.2, this student forgot the closing quotation mark, and thus the 

closing parenthesis and the semicolon were considered as part of the string literal by the 

compiler. While the next line (line 13) had a correct expression, the error occurred because the 

compiler was expecting something matching the previous line. 

CE13: illegal start of type usually was a side effect of the previous two errors. For 

example, when a Java keyword was used as the variable name in assignment (see line 5 in Figure 

4.2) or the import statement was placed within the class definition, this error also occurred. 

Sometimes, it was caused by mismatched braces or parentheses. For instance, if the opening 

brace in line 11 of Figure 4.1 is omitted, the compiler will consider the keyword else in line 14 as 

the start of type, which is illegal. 

Misconception 3: Confusion about Java Variables 

Five of the 15 common compilation errors were related to deficient knowledge or 

misunderstandings of Java variables and variable operations, including CE1, CE10, CE11, CE12, 

and CE15.  

CE1: cannot find symbol was the most common error in this study. This error occurred 

when an identifier, typically a variable, was not declared before being used in the program. 

Declaration of variables before using them is required in Java. However, in this study, students 

often forgot variable declaration. This result is not surprising because students do not have to 

declare variables in math, which is where most students first learned the concept Variable. 

Another cause of this error was the incorrect spelling of variable names which led to 

inconsistencies between identifiers’ declaration and use. Java identifiers are case sensitive, but 
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many students used lower-case and upper-case letters interchangeably (see line 2 and 3 in Figure 

4.3). Some students defined a variable using one name (e.g., n) but used another name to refer to 

the variable (e.g., a).  

On the contrary, CE11: variable is already defined was due to duplicate variable names. 

In Java, every variable in the same scope needs to have a distinct name (identifier). When two 

variables were declared using the same name, this error occurred. Line 6 and 7 in Figure 4.3 

presents an example of this error. 

CE10: incompatible types occurred when assigning a value of an expression to a 

variable whose type was incompatible with the expression type. The analysis of students’ code 

showed that this error usually appeared in two situations. First, students’ programs often read 

input in one type and assigned the input value to a variable with an incompatible type. For 

1 //cannot find symbol 
2 int sum = 0; 
3 Sum = Sum + 1; 
4  
5 //variable is already defined 
6 int result = 0; 
7 String result = String.format("%.2f", area); 
8  
9 // incompatible types 
10 int n = sc.nextLine(); 
11 String name = sc.nextInt();                 
12  
13 int a = 10; 
14 int b = 20; 
15 if(a = b){...} 
16  
17 //incorrect use of operators 
18 String i = in.nextLine(); 
19 String j = in.nextLine(); 
20 String k = i%j; 
21  
22 double ans = -b+((b^2)-4*a*c)^.5; 
23                 
24 if(a>=b>=c){...} //variables a, b, and c are of int type 
25  
26 //possible loss of precision 
27 int radius = in.nextDouble(); 
28 int s = (a+b+c)/2.0; 
29 int s = Math.sqrt(n); 

 

Figure 4.3. Examples of erroneous code about variables and variable operations 
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example, in line 10 of Figure 4.3, the sc.nextLine() read String input but its value was assigned to 

an int variable. Line 11 of Figure 4.3 did it in a reversed way: reading int value and assigning it 

to a String variable. The second situation was related to the if-statement (conditional statement). 

Many students used the assignment operator (=) instead of the equality operator (==) to compare 

the values in the condition expression (see the expression in the parentheses in line 15). In Java, 

the condition expression in an if-statement must be a boolean expression, which evaluates to type 

boolean. However, because of the use of the assignment operator, the expression in this example 

resulted in an int value and thus CE10 occurred.  

CE12: incorrect use of operators resulted from using an operator for operands whose 

types were not allowed for this operator. One common example was that students used String 

type variables as operands for the modulus operator % (see line 18 to 20 in Figure 4.3). In Java, 

the modulus operator takes int type operands and returns the remainder. However, some students 

did not notice the variable type issues when using the modulus operator. Another common cause 

of this error was using Java operators in a mathematical way (see line 22 and 24 for examples). 

In line 22, the student wanted to use the ^ operator to get the power of expressions, in particular, 

b squared and the square root (the power of one-half) of the expression in parentheses. While the 

^ operator may work as the exponentiation operator in math, it is the XOR operator in Java, and 

thus the operator was incorrectly used here. In line 24, comparisons were chained, which is 

allowed in math. However, Java evaluates comparisons one by one. In this case, the expression 

a>=b evaluated to a boolean value, which was then compared to the variable c using the >= 

(greater than or equal to) operator. Hence, the comparison operator was not used correctly, 

because comparing a boolean with an int was not allowed by the >= (greater than or equal to) 

operator. 

CE15: possible loss of precision typically occurred when students tried to assign a 

double type value (higher precision) to an int type variable (lower precision). Figure 4.3 presents 

two examples of this error. In line 27, this student tried to read the input value of the double type 

using the Scanner and assigned to an int type variable radius. In line 28, the expression on the 

right side of the equals sign evaluated to a double type value but the variable on the left side of 

the equals sign was of int type. 
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Common Test Errors 

According to the selection standards of difficult problems, nine problems were identified 

as difficult problems (see Table 4.2). Two difficult problems, Sort Three Integers and 

Arithmetic Operations, did not have any errors that met the common test error selection 

standards. Among the other seven difficult problems, 10 common test errors were found. Among 

all the test errors, 54% were related to those difficult problems, and the 10 common test errors 

accounted for 39% of all test errors of the difficult problems. The 10 common test errors are 

numbered and presented in Table 4.3. The “TE” in the error number stands for “Test Error”. 

Additional information in the table includes relevant problems, the error name, and the 

occurrence rate. Four common misconceptions were identified based the 10 test errors. Details of 

the errors and the misconceptions are provided and discussed in the following section. 

 

Table 4.2 

Difficult Problems 

Problem Correct Rate Solved 

Area of Circle 27% 52/55 (95%) 

Say Hi to Anyone 28% 55/55 (100%) 

Area of Triangle 34% 44/55 (80%) 

Quadratic Equation 2 41% 34/55 (62%) 

Sort Three Integers 41% 37/55 (67%) 

Sum of Digits 42% 50/55 (91%) 

Arithmetic Operations 47% 49/55 (89%) 

How Old Are We? 47% 55/55 (100%) 

Who is Max? 48% 42/55 (76%) 

 

Table 4.3 

Common Test Errors 

Problem # Test Error Occurrence Rate 

Area of Circle 
TE1 Mismatched input 28/52 (54%) 

TE2 Wrong decimal places 15/52 (29%) 

Say Hi to Anyone TE3 Missing punctuation 23/55 (42%) 

Area of Triangle 
TE4 Integer division issue 22/44 (50%) 

TE5 Wrong decimal places 11/44 (25%) 

Quadratic Equation 2 
TE6 Inappropriate comparison 12/34 (35%) 

TE7 Wrong output 7/34(21%) 

Sum of Digits TE8 Mismatched input 16/50 (32%) 

How Old Are We? TE9 Mismatched input 6/55 (11%) 

Who is Max? TE10 Forgot Special Cases 18/42 (43%) 
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Misconception 1: Misunderstandings of Java Input 

Among the 10 common test errors, three were related to mismatched input (TE1, TE8, 

and TE9). In the problem Area of Circle, the student program had to read the radius and 

calculate the area of the circle. The given radius was a number, either an integer or a decimal 

number. However, twenty-eight students used the nextInt() method of the Scanner to read the 

input. As this method could only read integer input, when the given radius was a decimal number 

(e.g., 5.9) the mismatched input error occurred. In the Sum of Digits problem, students were 

required to write a program to read a 3-digit integer and calculate the sum of the digits using the 

modulus operator and the division operator. Sixteen students made a mistake that called the 

nextInt() method three times to read three integers instead of one integer. As only one integer 

was given as input, calling the nextInt() method three times made the input mismatched. In the 

How Old Are We? problem, the student program had to read two integers as input and calculate 

the sum. Some students called the nextInt() method too many times in their solutions or called 

the nextLine() method twice to read two Strings rather than integers. 

 

Misconception 2: Misunderstandings of Java Output 

Four common test errors were related to incorrect output (TE2, TE 3, TE 5, and TE7). 

Among the four errors, two of them (TE2 and TE5) were the same: forgetting to keep 2 decimal 

places of the output as required by the problem. In the problems Area of Circle and Area of 

Triangle, students were required to output the area as double type with only two decimal places. 

The statement for keeping 2 decimal places String.format("%.2f", area) was given in the 

problem description, and similar examples were introduced in class. Still many students forgot to 

keep 2 decimal places of the output or did not store the result in the variable that was output. In 

the problem Say Hi to Anyone, the student program had to read a name such as “Mike” and 

output a sentence like “Hello, Mike!”. Between the word “Hello” and the input name, there is a 

comma followed by a space. At the end of the sentence, there is an exclamation mark (!). Many 

student solutions omitted the required punctuation marks in the output. Possibly they mistakenly 

believed that the output of the solution did not have to exactly match the expected output. 

Another output-related error occurred when students solved the problem Quadratic Equation 2. 

Students were required to write a program to solve standard-form quadratic equations. When the 
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equation has two roots, the correct program should output the smaller one on the first line and the 

larger one on the second line. However, some students did not output the roots in the required 

order or output the roots in the same line.  

Misconception 3: Confusion about Java Operators 

Two common test errors were related to inappropriate use of operators. For the problem 

Area of Triangle, students were required to use Heron's formula to calculate the area of a 

triangle given three integers (say a, b, and c) which represented the lengths of the three sides. 

The first step of applying Heron's formula is to calculate s (half of the triangle’s perimeter), by 

using the expression: s = (a+b+c)/2. In Java, when the two operands of the division operator are 

integers (int type), integer division is used and returns an int type value. For instance, the result 

of 11/2 is 5 rather than 5.5. On the other hand, when either operand is a double, the result of the 

division will be a double type value. For example, the result of 11/2.0 is 5.5. While this feature 

of the division operator was illustrated and discussed during the class, many students did not 

notice that when the sum of a, b, and c was an odd number the result of the expression (a+b+c)/2 

would be an integer and ignored the decimal places. Thus, the final result of the solution -- the 

area of the triangle -- was incorrect. The other error of inappropriate operator use occurred when 

solving the problem Quadratic Equation 2. Many students used the Java equality operator == to 

compare doubles or Strings. As double type values are not exact in Java, using the equality 

operator to compare two doubles might lead to a wrong result. Furthermore, because the problem 

required displaying two decimal places of the output (one root or two roots), many students 

formatted the roots into Strings and used the equality operator to check if the two roots were 

equal. These students believed that when the two roots were equal the equation had one root. 

However, in Java, the equality operator does not work for comparing Strings; the correct way is 

to call the equals() method to check equality of two String values. In this case, even though the 

logic of students’ solutions seemed to be correct for solving the problem, the output failed to 

match the expected one given certain test cases.  

Misconception 4: Forgetting to Consider Special Cases 

The last common test error occurred when solving the problem Who is Max?. To solve 

this problem, students were required to write a program to find the greatest number among three 
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given integers. The most common issue here was that many students failed to consider special 

cases of the given integers. When two or three integers were equal, many student solutions did 

not produce any output, because their conditional statements did not consider such cases. As 

novices, it is not surprising that they forgot to inspect boundary conditions and/or special cases. 

Overall Effects of Feedback 

To address RQ2, both quantitative and qualitative data analysis were conducted to see 

whether and how the targeted feedback made a difference in students’ solutions and so may have 

contributed to conceptual change. This section presents the results of the quantitative analysis 

which checked whether the targeted feedback had positive effects on conceptual change. 

Difference in Overall Improvement Rates 

Students’ solutions of the two groups were used to analyze the effects of feedback. In 

total, group 1 and group 2 made 529 and 399 erroneous solutions respectively. When calculating 

the improvement rate, student solutions with no “next solution” were excluded from the analysis, 

because without a “next solution” the improvement of an erroneous solution could not be 

determined. In the end, group 1 had 521 erroneous solutions, and 176 of them were improved. 

Group 2 had 397 erroneous solutions, and 177 of them were improved. Thus, the improvement 

rates of the two groups were 34% and 45% respectively (see Figure 4.4). A chi-square test was 

performed to examine the relationship between group and improvement rate. The improvement 

rates of the two groups were significantly different, χ2 (1, N = 918) = 11.11, p < .001. Overall, 

students of group 2 were more likely to improve their erroneous solutions than those of group 1. 

Difference in Improvement Rates of Solutions with Common Errors 

As students of group 2 received targeted feedback when their solutions had common 

errors, it was expected that students of group 2 would have a better improvement rate of 

solutions with common errors than students of group 1. Among the 521 erroneous solutions of 

group 1, 310 had common errors, and 119 of them were improved. Among the 397 erroneous 

solutions of group 2, 170 solutions showed common errors and received feedback, and 99 of 

them were improved. Hence, the two groups’ improvement rates of solutions with common 

errors were 38% and 58% respectively (see Figure 4.5). The results of a chi-square test indicated 



www.manaraa.com

61 

 

that the difference in improvement rates was significant, χ2 (1, N = 480) = 17.45, p < .001. The 

results suggest that when a student solution had common errors, a student who received targeted 

feedback was more likely to effectively improve his or her solution. 

Difference in Improvement Rates of Solutions with and without Feedback 

For group 2, while 170 erroneous student solutions received feedback, the other 227 

solutions, which had non-common errors, did not receive targeted feedback. It was also expected 

that solutions with feedback would have a better improvement rate than those with no feedback. 

The results confirmed the hypothesis. For solutions with targeted feedback, 99 were improved 

with an improvement rate of 58%; for solutions without targeted feedback, 78 were improved 

with an improvement rate of 34% (see Figure 4.6). The results of a chi-square test indicated that 

the difference was significant, χ2 (1, N = 397) = 22.42, p < .001. In other words, when a feedback 

message was presented, a student of group 2 was more likely to effectively improve his or her 

erroneous solution. 

 

Figure 4.4. Overall improvement rates  

34%

45%

0%

10%

20%

30%

40%

50%

Group 1 Group 2
 

Figure 4.5. Improvement rates of common errors 
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Effects of Feedback on Evolution of Students’ Misconceptions 

Qualitative analysis of student code was also used to address RQ2. The goal of the 

qualitative analysis was to understand how targeted feedback affected the evolution of students’ 

(mis)conceptions. Four feedback cases were selected for the qualitative analysis according to the 

case selection procedures described in the Methodology section. First, improvement rates of each 

feedback message were calculated. Table 4.4 and Table 4.5 present the improvement rates of 

feedback for compilation and test errors respectively. In addition to the improvement rate, the 

number of occurrences of the errors and the number of improvements are also included in the 

tables (see the numbers within the parentheses). While students of group 1 did not receive 

targeted feedback messages for the common errors, their improvement rates are also presented in 

the tables in order to make comparisons. As no student in group 2 made the common test errors 

TE6 and TE9, relevant feedback messages TFB6 and TFB9 are not included in Table 4.5. See 

Appendix B for detailed information of each feedback message. 

 

 

 

Figure 4.6. Improvement rates of group 2’s solutions without and with feedback 
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Table 4.4 

Feedback for Compilation Errors 

Feedback Relevant Errors 
Improvement Rate 

Group 2 Group 1 

CFB1 CE4: class expected 

CE5: reached end of file 

CE7: ) expected 

CE9: identifier expected 

50% (18/36) 34% (26/76) 

CFB2 CE1: cannot find symbol 

CE6: not a statement 

CE8: illegal start of expression 

CE13: illegal start of type 

61% (35/57) 45% (35/77) 

CFB3 CE2: ; expected 43% (10/23) * 45% (18/40) 

CFB4 CE3: program name error 83% (25/30) ** 54% (30/56) 

CFB5 CE10: incompatible types 100% (1/1) 100% (2/2) 

CFB6 CE11: variable is already defined 63% (5/8) 50% (3/6) 

CFB7 CE12: incorrect use of operators 67% (2/3) 50% (1/2) 

CFB8 CE15: possible loss of precision 50% (1/2) 75% (3/4) 

Note. * indicates the feedback with the worst improvement rate, and ** indicates the feedback 

with the best improvement rate. Average number of occurrences was 20. 

 

Table 4.5 

Feedback for Test Errors 

Feedback Relevant Errors 
Improvement Rate 

Group 2 Group 1 

TFB1 TE1: Mismatched input 17% (1/6) * 11% (3/28) 

TFB2 TE2: Wrong decimal places 50% (3/6) 67% (2/3) 

TFB3 TE3: Missing punctuation 50% (3/6) 50% (6/12) 

TFB4 TE4: Integer division issue 83% (5/6) ** 50% (2/4) 

TFB5 TE5: Wrong decimal places 33% (1/3) 29% (2/7) 

TFB7 TE7: Wrong output 100% (1/1) 100% (1/1) 

TFB8 TE8: Mismatched input 25% (1/4) 33% (1/3) 

TFB10 TE10: Forgot Special Cases 20% (1/5) 14% (2/14) 

Note. * indicates the feedback with the worst improvement rate, and ** indicates the feedback 

with the best improvement rate. Average number of occurrences was 4.63.  
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According to the case selection procedures, the average number of occurrences of 

common compilation and test errors were calculated, which were 20 and 4.63 respectively. Thus, 

the four selected cases were CFB4, CFB3, TFB4, and TFB1 because the goal was to identify 

extreme cases (best and worst rates of improvement) with an above average number of 

occurrences. CFB4 and CFB3 were the compilation error feedback messages (CE Feedback) 

with the best and worst improvement rate (IR). TFB4 and TFB1 were the test error feedback 

messages (TE Feedback) with the best and worst improvement rate (IR). Table 4.6 presents the 

details about the four feedback messages.  

 

Table 4.6 

Selected Feedback Cases 

Type IR Content 

CE Feedback 

with Best IR 

83% The name of your program is wrong! 

Please name your program as XXX! 

CE Feedback 

with Worst IR 

43% You may miss semicolon ; somewhere in your code. Check if you use 

semicolon ; appropriately. 

TE Feedback 

with Best IR 

83% An integer divided by another integer gives you an integer in Java. 

For example, 11 / 2 gives 5. 

However, 11 / 2.0 gives you 5.5 

The following code may help you solve your problem: 
double s = (a + b + c) / 2.0; 

TE Feedback 

with Worst IR 

17% The user may enter a number such as 2.3. Your program has to read a 

double instead of an int.  

The following code may help you solve your problem: 
Scanner in = new Scanner(System.in); 
double radius = in.nextDouble(); 

Note. XXX will be replaced by the required program name of a problem. 

 

Compilation Error Feedback Message with Best Improvement Rate  

The feedback message for addressing the program name error showed an improvement 

rate of 83%. The program name error was a straightforward compilation error which occurred 

when a student program’s name (the name of the class) did not match its file name. In Mulberry, 

the required program name was provided in the problem description. However, students often 

forgot to use the required name or misspelled the program name. The targeted feedback message 

for addressing this error was also straightforward and described what was wrong and provided 
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the correct program name (see Table 4.6). The analysis of relevant student solutions found 

different patterns of improving the code between students of group 2 and group 1. 

When students of group 2 had the program name error in their solutions, they typically 

could directly locate the error and revise the program name into the correct one. Figure 4.7a 

presents a typical code improvement scenario of students in group 2. This student first named the 

class as Problemsolving and submitted the solution. In the next solution, this student revised the 

class name into the correct one SumOfTwo. On the contrary, students in group 1 often had 

intermediate solutions to fix this error. Figure 4.7b presents a student case. In the first solution, 

this student named the class as Project01 while the required program name was HelloAnyone. 

# Solution #1 Solution #2 

1 //SumOfTwo// //SumOfTwo// 

2   

3 import java.util.Scanner; import java.util.Scanner; 

4   

5 public class Problemsolving { public class SumOfTwo { 

6   public static void main (String[]args){   public static void main (String[]args){ 

7       

8     Student code were hidden     Student code were hidden 

9 } } 

10 } } 

 

Figure 4.7a. Group 2 student code example of improvement of program name error 

# Solution #1 Solution #2 

1 import java.util.Scanner; import java.util.Scanner; 

2   

3 public class Project01 { public class Project01 { 

4   public static void main (String[] args) {   public static void main (String[] args) { 

5   

6     Student code were hidden     Student code were hidden 

7 } } 

8 } } 

 

# Solution #3  

1 import java.util.Scanner;  

2   

3 public class HelloAnyone {  

4   public static void main (String[] args) {  

5   

6     Student code were hidden  

7 }  

8 }  

 

Figure 4.7b. Group 1 student code example of improvement of program name error 
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Next, rather than revising the class name, this student deleted the whole class definition line. 

Because students of group 1 only received the default compiler message as feedback, this student 

might see an error message like “Error: class Project01 is public, should be declared in a file 

named Project01.java.” With this error message, as a novice, students might not be able to 

understand what exactly was wrong. In this case, this student might mistakenly believe that the 

line public class Project01 was wrong and should be deleted. Finally, in the third solution, he or 

she realized that it was a program name error and fixed the problem. 

While this feedback message was simple, it helped students understand what was wrong 

with the program and how to fix it. The program naming rule was introduced in the class and 

repeatedly practiced during problem solving. Hence, students probably knew this rule. However, 

without a targeted feedback message, they might have difficulties to understand or notice the 

error. The feedback helped to reduce the number of intermediate solutions during the code 

improvement process. 

Compilation Error Feedback Message with Worst Improvement Rate 

The feedback message for addressing the ; expected error was identified as the worst 

case. The improvement rate of group 2 (43%) was even less than that of group 1 (45%). This 

feedback message seemed to be relatively ineffective. However, the qualitative analysis of 

student code revealed that the quantitative analysis failed to identify all the improved cases. 

Figure 4.8 presents two continuous solutions of the student Mike in group 2. In the first 

solution, he missed the semicolons in line 6 and 7. Thus, this solution failed to be compiled, and 

the feedback telling him to add the semicolons was presented. In the next solution, this student 

added the necessary semicolons. While the ; expected error was fixed, this solution still had 

# Solution #1 Solution #2 

1 //Saymore //Saymore 

2 import java.util.Scanner; import java.util.Scanner; 

3 public class HelloRabbit { public class HelloRabbit { 

4   public static void main(String[] args){   public static void main(String[] args){ 

5       //make output       //make output 

6      System.out.println("Don't worry!")      System.out.println("Don't worry!"); 

7      System.out.println("I can cure you")      System.out.println("I can cure you"); 

8 } } 

9 } } 

 

Figure 4.8. Mike’s code example of improvement 
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compilation errors. In the comment in line 1, Mike wrote Saymore, which was the required 

program name for solving the problem Say More. However, in line 3, he named the class as 

HelloRabbit, which led to the program name error. In this study, this solution was labeled not 

improved, because the first (Solution #1) and the next (Solution #2) solution both had 

compilation errors. While Mike did improve his program and fixed the; expected error, the 

quantitative analysis did not identify the solution as improved. Therefore, the feedback message 

was effective in addressing the specific error, and so this feedback message showed positive 

effects even though the quantitative analysis did not detect it. 

Test Error Feedback Message with Best Improvement Rate 

The feedback message with the best improvement rate for addressing test errors was 

TFB4. It was designed to address the test error TE4: Integer division issue of the problem Area 

of Triangle. This error occurred when int type variables or values were used inappropriately in 

an expression with the division operator, because integer division in Java returns an int type 

value and ignores the decimal places. The feedback TFB4 explained how this error happened and 

provided a possible way to fix it. The analysis of student code indicated that students of group 2 

made fewer intermediate solutions to fix this error. 

# Solution #1 Solution #2 

1 import java.util.Scanner; import java.util.Scanner; 

2   

3 public class AreaOfTriangle { public class AreaOfTriangle { 

4   public static void main(String[ ] args) {     public static void main(String[ ] args) {   

5     Scanner in = new Scanner( System.in);     Scanner in = new Scanner( System.in); 

6     int a = in.nextInt( );     int a = in.nextInt( ); 

7     int b = in.nextInt( );     int b = in.nextInt( ); 

8     int c = in.nextInt( );         int c = in.nextInt( );     

9     

10     int s = (a+b+c) / 2;     double s = (a+b+c) / 2.0; 

11           

12     a = (s - a);     a = (s - a); 

13     b = (s - b);     b = (s - b); 

14     c = (s - c);     c = (s - c); 

15           

16     double d = Math.sqrt(s*a*b*c);      double d = Math.sqrt(s*a*b*c);  

17     String result=String.format("%.2f",d);     String result=String.format("%.2f",d); 

18     System.out.println(result);     System.out.println(result); 

19    }    } 

20 } } 

 

Figure 4.9a. Group 1 student code example of improvement 
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According to the quantitative data, students of group 2 made this error six times, and five 

of them were successfully improved with the feedback. The analysis of the one failed case 

showed that the student also fixed this error, but the fix of the error led to another problem. 

Figure 4.9a shows the student’s two solutions. The first solution had the integer division issue 

(see line 10). The second solution fixed this error but created a compilation error possible loss of 

precision, because the three assignment expressions in line 12, 13, and 14 all tried to assign 

double values to int type variables. Thus, this was not considered as an improved solution in the 

quantitative analysis, even though the error for which the feedback was given was successfully 

fixed. 

When students in group 1 tried to fix this error, they tended to have more middle 

solutions. Figure 4.9b shows an example. This student, Emily, made this error in the first 

solution. In the next solution, she changed the type of the variable s from int to double. She was 

on the right track, but this change did not completely fix this error, because the division 

# Solution #1 Solution #2 

1 import java.util.Scanner; import java.util.Scanner; 

2 public class AreaOfTriangle{ public class AreaOfTriangle{ 

3   public static void main(String[] args) {   public static void main(String[] args) { 

4   Scanner in = new Scanner(System.in);   Scanner in = new Scanner(System.in); 

5   int a = in.nextInt();   int a = in.nextInt(); 

6   int b = in.nextInt();   int b = in.nextInt(); 

7   int c = in.nextInt();   int c = in.nextInt(); 

8   int sum = a + b + c;     int sum = a + b + c;   

9   int s = sum / 2;     double s = sum / 2; 

10  //Student code were hidden  //Student code were hidden 

11   }     }   

12 } } 

 

# Solution #3  

1 import java.util.Scanner;  

2 public class AreaOfTriangle{  

3   public static void main(String[] args) {  

4   Scanner in = new Scanner(System.in);  

5   int a = in.nextInt();  

6   int b = in.nextInt();  

7   int c = in.nextInt();  

8   int sum = a + b + c;    

9   double s = sum / 2.0;    

10  //Student code were hidden  

11   }    

12 }  

 

Figure 4.9b. Emily’s code example of improvement 
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expression sum / 2 would still return an integer value and ignore the decimal places. Finally, she 

fixed the error completely in the third solution. If she had received the feedback message, she 

might have fixed the error in Solution #2, instead of Solution #3. 

Test Error Feedback Message with Worst Improvement Rate 

The feedback message with the worst improvement rate for addressing test errors was 

TFB1. It was for addressing the test error TE1: Mismatched input of the problem Area of 

Circle. In this problem, the radius of the circle could be an integer or a decimal number (e.g., 

5.9). When a student solution used the nextInt() method of the Scanner to read the radius, the 

mismatched input error occurred. Both groups had poor improvement rates on this error. The 

feedback TFB1 explained how the error occurred and offered code for fixing it. The analysis of 

student code found that students in group 2 had a better improvement rate than was shown in the 

quantitative analysis. 

According to the quantitative data, students of group 2 made this error six times, but only 

one of them successfully improved with the feedback. The analysis of student code showed that 

among the five “not improved” solutions, four were actually “improved,” and fixed this error but 

still had other errors. Figure 4.10a presents such an example. This student, Alan, had the 

mismatched input error in Solution #1 and fixed this error in Solution #2. However, his second 

solution output the wrong variable; he should have printed the variable result rather than the 

variable area. In fact, this made Solution #2 get the test error TE2: Wrong decimal places. In 

this scenario, the quantitative analysis considered the solution as “not improved” even though the 

student was able to fix the identified error. 

# Solution #1 Solution #2 

1 import java.util.Scanner; import java.util.Scanner; 

2 public class AreaOfCircle { public class AreaOfCircle { 

3   public static void main (String[]args){   public static void main (String[]args){ 

4     Scanner in = new Scanner(System.in);     Scanner in = new Scanner(System.in); 

5     int a = in.nextInt();     double a = in.nextDouble(); 

6     double area = a*a*3.14;      double area = a*a*3.14;  

7   

8   //output   //output 

9 String result=String.format("%.2f",area); String result=String.format("%.2f",area); 

10 System.out.println(area); System.out.println(area); 

11  }  } 

12 } } 

 

Figure 4.10a. Alan’s code example of improvement 
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In contrast, students of group 1 made this error 28 times with three successful 

improvements. Among the other 25 failed cases, only three identified the error immediately and 

made some partial improvements. Figure 4.10b shows the improvement case of the student 

Mark. He made this error in Solution #1 and partially fixed it in Solution #2 by changing the type 

of the variable a to double. Meanwhile, he added a new line String.format("%.2f", result). 

However, he forgot to add the semicolon to end this statement, which led to the compilation 

error ; expected. Next, he fixed the ; expected error in Solution #3 by adding the semicolon. 

Finally, in Solution #4, he fixed the other part of the mismatched input error, which was 

changing nextInt() method into nextDouble() method. While Alan fixed this error in the end, he 

required several steps. If the feedback message had been presented, he might not have required 

those intermediate solutions.  

  

# Solution #1 Solution #2 

1 import java.util.Scanner; import java.util.Scanner; 

2 public class AreaOfCircle{ public class AreaOfCircle{ 

3   public static void main(String[] args) {   public static void main(String[] args) { 

4     Scanner in = new Scanner(System.in);     Scanner in = new Scanner(System.in); 

5     int r = in.nextInt();     double r = in.nextInt(); 

6     double result = r * r * 3.14;     double result = r * r * 3.14; 

7          String.format("%.2f", result) 

8     System.out.println(result);     System.out.println(result); 

9   }     }   

10 } } 

 

# Solution #3 Solution #4 

1 import java.util.Scanner; import java.util.Scanner; 

2 public class AreaOfCircle{ public class AreaOfCircle{ 

3   public static void main(String[] args) {   public static void main(String[] args) { 

4     Scanner in = new Scanner(System.in);     Scanner in = new Scanner(System.in); 

5     double r = in.nextInt();     double r = in.nextDouble(); 

6     double result = r * r * 3.14;     double result = r * r * 3.14; 

7     String.format("%.2f", result);     String.format("%.2f", result); 

8     System.out.println(result);     System.out.println(result); 

10   }     }   

11 } } 

 

Figure 4.10b. Mark’s code example of improvement 
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Summary of Results 

In this study, students’ erroneous solutions were analyzed to identify common errors and 

specific misconceptions to address RQ 1. Fifty-five distinct compilation errors were identified, 

and 15 of them were categorized as common ones. The data also revealed that the 15 common 

compilation errors accounted for 92% of all compilation errors. Based on the 15 common 

compilation errors, three underlying student misconceptions were identified, including deficient 

knowledge of fundamental Java program structure, misunderstandings of Java expressions, and 

confusion about Java variables. In addition, 10 common test errors were identified based on nine 

difficult problems. The results showed that 54% of all test errors were related to those difficult 

problems. The 10 common test errors accounted for 39% of all test errors of the difficult 

problems. Four common student misconceptions were identified based on the 10 common test 

errors, including misunderstandings of Java input, misunderstandings of Java output, confusion 

about Java operators, and forgetting to consider special cases. 

To address RQ2, both quantitative and qualitative data analysis were conducted to see 

whether and how the targeted feedback made a difference in students’ solutions and so may have 

contributed to conceptual change. The results of quantitative analysis indicated that targeted 

feedback messages enhanced students’ rates of improving erroneous solutions. Students of group 

2 (the group receiving targeted feedback messages) showed significantly higher improvement 

rates in all erroneous solutions and solutions with common errors compared to students of group 

1. Within group 2, students also showed a significantly higher improvement rate in solutions 

with targeted feedback messages compared to solutions without targeted feedback messages. All 

these results suggest that with targeted feedback messages, students were more likely to correct 

errors in their code. The qualitative analysis of students’ solutions of four selected cases noted 

that when improving the code, students of group 2 made fewer intermediate incorrect solutions 

than students in group 1. In other words, the targeted feedback messages appear to have helped 

to promote conceptual change. 

 

  



www.manaraa.com

72 

 

CHAPTER 5: DISCUSSION AND CONCLUSIONS 

Student Misconceptions in Introductory Programming 

Common Compilation Errors and Underlying Misconceptions 

In this study, 55 distinct compilation errors were identified, and 15 of them were 

categorized as common ones. The results are consistent with previous studies on college 

students’ compilation errors in introductory programming (see Becker, 2016 and Pettit et al., 

2017). Most common compilation errors in this study were also found to be common among 

college CS1 students. However, there is one exception. The CE3: program name error found in 

this study did not appear on the common compilation error list of prior studies (Becker, 2016). 

This minor difference is not so surprising, because this error may not occur in a different 

instructional or research setting. For example, in a study of using the tool CodeWrite, students 

were requried to implement a method body to complete an exercise (Denny, Luxton-Reilly, & 

Tempero, 2012). In that study, students had no chance to make the program name error, as 

they did not have to write the program name. In addition, when the programming exercises allow 

arbitrary program names, the program name error should not be a common error because no 

specific program name is required. At the same time, students in this study did not have to define 

a method with a return statement, so errors related to the return statement, which were identified 

as common errors by prior studies (Brown & Altadmri, 2017; Denny et al., 2012), did not appear 

in this study. While minor differences exist between common compilation errors of this study 

and previous studies on college students, overall the common errors are similar. In other words, 

secondary school students in this study made similar common Java compilation errors to college 

students. 

Based on the 15 common compilation errors, three underlying student misconceptions 

were identified, including deficient knowledge of fundamental Java program structure, 

misunderstandings of Java expressions, and confusion about Java variables. The first 

misconception, deficient knowledge of fundamental Java program structure is related to students’ 

knowledge of basic Java syntax. In this study, students often made syntax errors, such as missing 

semicolons (CE2), incorrectly naming their programs (CE3), and mismatching braces and 
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parentheses (CE4, CE5, CE7, CE9, and CE14). These errors seem to be superficial and trivial. 

Knowing relevant syntactic knowledge such as adding a semicolon to end a statement is not 

challenging, and many times students in this study were able to construct syntactically correct 

programs or fix those syntax errors eventually. This suggests that students have knowledge about 

Java program structure. However, the repetition of these syntax errors indicates that there may 

exist a deeper problem. While students may be aware of relevant syntactic knowledge about Java 

program structure, they may not be able to understand and apply the knowledge correctly 

(Krathwohl, 2002). When the task gets complicated, the task complexity and students’ 

unfamiliarity with Java syntax may increase the demand on cognitive load so that students may 

have difficulties (Sanders & Thomas, 2007; Sweller, 1988). Hence, they start to omit semicolons, 

use wrong program names, and mismatch braces. Taber (2013) points out that conceptual 

knowledge (knowledge of concepts) has implicit elements that are not typically taught in class. 

For example, students in this study were taught the fundamental Java program structure, but they 

did not learn why the semicolons are necessary, the basic mechanism of the compiler, and what 

possible error messages would be when the program structure is wrong. Without the implicit 

knowledge, students may be able to write a correct Java program, but they have deficient 

knowledge that may lead them to make relevant mistakes. Students may learn certain implicit 

knowledge during the programming practice by themselves. However, explicitly teaching 

implicit knowledge of Java program structure, instead of simply introducing the facts about the 

fundamental Java program structure, may help students better understand the concept (Muller et 

al., 2007; Sajaniemi & Kuittinen, 2005). 

The other two misconceptions, misunderstandings of Java expressions and confusion 

about Java variables, are mainly related to the conflicts between students’ existing knowledge 

and new knowledge. While students’ unfamiliarity of Java syntax may contribute to their errors 

of using Java expressions and variables, the major interference appears to be from students’ prior 

knowledge. While sometimes students’ errors in constructing Java expressions were due to 

certain syntax problems (e.g. missing or mismatching quotation marks), the analysis of student 

code revealed that students frequently attempted to write Java expressions in ways similar to how 

they would write expressions in math class. For instance, some students omitted the 

multiplication operator (*) in their expressions (e.g. d = a + 0.1a + 0.01a). While the 

multiplication operator can be omitted in a math expression, it is required in a Java expression. 
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Similarly, students’ prior knowledge about the concept variable also interfered with their 

learning of Java variables and variable operations. For example, many students in this study 

made errors related to variable types and precision. Variables in math do not have a specific type 

and have unlimited precision, but in Java variable types and precision must be specified.  

Previous research has indicated that one dominant source of students’ misconceptions is 

their prior knowledge (Bonar & Soloway, 1985; Smith et al., 1994). In the learning of computer 

programming, students’ existing math knowledge is an important factor contributing to student 

misconceptions (Clancy, 2004; Qian & Lehman, 2017). Students construct new knowledge based 

on their existing knowledge (Ausubel, 2000; Jonassen, 1991), and when the new knowledge 

conflicts with their prior knowledge, students have confusion between pre-instructional 

conceptions and new conceptions and thus misconceptions begin to form (Özdemir & Clark, 

2007; Taber, 2013). Java expressions and variables share many similarities with those of math. 

When students in this study wrote their Java code, they sometimes confused Java expressions 

and variables with the math ones, as they had learned similar concepts in math. According to 

conceptual change theories (Özdemir & Clark, 2007; Taber, 2013), a student’s misconception 

has both correct and incorrect elements. To promote conceptual change, it is important to help 

students fix the incorrect elements and refine their understanding of the relationships between 

new knowledge and existing conceptual structure (diSessa, 2014). Hence, in instruction, teachers 

should highlight the differences between Java and math knowledge to help students reduce 

confusion and reach a better understanding of the computer science concepts.  

It is important to note that all the compilation errors could be detected by the IDE 

students used, drJava, on their local machine. In other words, if students had compiled their 

solutions before submitting them to Mulberry, they should not have had any compilation errors 

in their code. However, students in this study still made a large number of compilation errors. 

This may indicate that students often failed to use the IDE to check if their solutions had 

compilation errors before submitting them to Mulberry. When student developed their solutions, 

they often only used the built-in Java editor of Mulberry (see Figure 3.1) and failed to use drjava 

to test their solutions. Another possibility is that students could not understand the compiler error 

messages given by the IDE. For beginners, raw compiler error messages are “cryptic and 

uninformative, often terse and misleading” (Becker, 2016, p. 126). Compiler error messages 

usually describe errors using technical terms, which make them difficult to understand. In 
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addition, these error messages are not always precise and sometimes point to the lines with no 

errors. Therefore, it is possible that students tried to compile their solutions using the IDE, but 

they could not understand the error messages from the IDE and so submitted their solutions as is 

ignoring the errors. Prior studies have indicated that novices often have limited knowledge of 

compiler error messages, locating errors, and fixing errors (Becker, 2016; Fitzgerald et al., 2008; 

McCauley et al., 2008). Hence, explicitly teaching knowledge of compiler error messages and 

skills of debugging may help students better use the features of the IDE and reduce the 

compilation errors in their programs. 

Common Test Errors and Underlying Misconceptions 

In this study, 10 common test errors were identified. Different from compilation errors, 

test errors are problem-specific. While previous studies have used student data in automated 

assessment systems to identify common compilation errors, few of them have examined common 

test errors and relevant student misconceptions. In this study, the 10 common test errors were 

identified based on nine difficult problems. Our results showed that 54% of all test errors were 

related to those difficult problems. The 10 common test errors accounted for 39% of all test 

errors of the difficult problems. In other words, difficult problems and common test errors can 

play an important role in understanding student misconceptions. Hence, researchers and 

educators should pay attention to students’ non-compilation errors, rather than only focusing on 

the compilation errors. 

As common tests errors are based on specific programming problems, the error details 

themselves may not be important to educators and researchers in other instructional settings. 

However, the relevant student misconceptions behind the errors can be meaningful and helpful to 

others. Four common student misconceptions were identified based on the 10 common test 

errors, including misunderstandings of Java input, misunderstandings of Java output, confusion 

about Java operators, and forgetting to consider special cases. 

The first two misconceptions, misunderstandings of Java input and output, are related to 

the concept Input/Output (I/O). In computer programming, the required input and expected 

output of a program must be exact. If a program can only read one integer at one time, inputting 

two integers or decimal numbers will result in errors and/or make the program crash. Similarly, 

if the expected output of a program is two words separated by a comma, outputting two words 
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separated by a space or without a separator makes this program inaccurate or incorrect. However, 

students in this study may not have understood the need for exactness of I/O in computer 

programming. They often failed to design code to read input or produce output in an exact way. 

One problem in Mulberry required a three-digit integer as input, but many students designed a 

program that read three integers as three digits rather than a single three-digit integer. Several 

problems required outputting decimal numbers with only two decimal places; however, students 

repeatedly failed to keep two decimal places. As novices, they might have had difficulties in 

using Java statements related to I/O. However, I/O statements were used in almost every 

program they wrote, and code examples for reading various kinds of inputs and producing 

special output (e.g. outputting a number with n decimal places) were introduced in class and/or 

provided in problem descriptions. Hence, students’ unfamiliarity with relevant Java statements 

may not be an essential problem, but their misunderstandings of the required exactness of I/O in 

computer programming can be vital.  

First, students’ everyday experience of using computers may make them believe that 

computers have certain intelligence like a human and can understand what they mean (Miller, 

2014; Pea, 1986). These days, students use graphical/touchable user interfaces all the time and 

may have limited experience in using a text-based user interface. Intelligent technologies such as 

Apple Siri and Microsoft Cortana make computers more human-like. Such life experiences may 

bring them a feeling that computers are smart enough to understand what they mean in the code. 

Second, their natural language may also make them believe that vagueness in code does not 

matter (Bonar & Soloway, 1985; Miller, 2014). Therefore, in instruction, teachers should help 

students build the understanding that computers are machines precisely executing code line by 

line and have no ability to understand ambiguous code. 

The third misconception, confusion about Java operators, is related to students’ prior 

math knowledge. In this study, two operators, the division operator (/) and the equality operator 

(==), were frequently used incorrectly by students. While the Java equality operator does not 

exist in math, students had learned the equality concept and meaning of the equals sign (=) in 

math. In math, when using the division operator to check for equality of two values, the types of 

the operands will not affect the results. For example, the mathematical expressions 11/2 and 

11/2.0 both give 5.5. However, in Java, when the types of the operands are different, the result of 

the operation may be different depending on the operator or method used (e.g. checking for 
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equality of String values). When students in this study used Java operators, they might not have 

appreciated the differences, even though the differences were introduced in class. On the other 

hand, the differences between Java and math operators are subtle and difficult for students to 

notice.  

Inappropriate use of operators typically does not produce any compilation errors. Without 

an obvious error message, students may believe that no error exists in their code (Ben-David 

Kolikant & Mussai, 2008). In addition, students need sufficient knowledge about Java variables 

to fully understand why an operator has certain behaviors. For example, to understand why the 

equality operator cannot be used to compare double or String type variables, students have to 

know that floating-point numbers are not precise in programming, and Strings are different from 

primitive data types. Therefore, in instruction, only introducing special features of certain Java 

operators may not help students understand the differences between Java and math operators. 

Explaining operator-related concepts such as variables and providing details about relationships 

between Java operators and variables may be an effective instructional strategy. 

The last misconception, forgetting to consider special cases, is related to students’ 

strategic programming knowledge (also called programming strategies). For novices who have 

just learned a programming language, their knowledge of the syntax and programming concepts 

is usually fragmentary and not well-organized into meaningful structures (Clancy & Linn, 1999; 

Davies 1993; Lister et al., 2006; ). Novices may be able to write a syntactically correct program 

but fail to consider boundaries of conditions and unexpected cases, because they lack certain 

patterns and strategies that experts use to evaluate and debug programs (Fisler et al., 2016; 

Sajaniemi & Prieto, 2005). In this study, students were all novices, so it is not surprising that 

they forgot to inspect boundary conditions and/or special cases. Prior studies have noted that 

explicitly teaching programming strategies, such as debugging strategies, can improve students’ 

strategic knowledge and help them better understand programming concepts (Muller et al., 2007; 

Qian &Lehman 2017; Sajaniemi & Kuittinen, 2005). 
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Feedback for Conceptual Change 

Overall Effects of Feedback 

The results of this study indicated that targeted feedback messages enhanced students’ 

improvement rates of erroneous solutions. Students of group 2 (the group receiving targeted 

feedback messages) showed significantly higher improvement rates in all erroneous solutions 

and solutions with common errors than students of group 1. Within group 2, students also 

showed a significantly higher improvement rate in solutions with targeted feedback messages 

compared to solutions without targeted feedback messages. All these results suggest that with 

targeted feedback messages, students were more likely to correct errors in their code. This 

finding is consistent with previous research (Becker et al., 2016). 

In the study of Becker et al. (2016), researchers provided feedback for 30 common 

compilation errors by enhancing the compiler error messages. They found that the 30 

compilation errors accounted for 78% of all errors, and the group receiving feedback messages 

made 32% fewer errors than the group only seeing the original Java compiler error messages. 

While the study of Becker et al. (2016) only investigated students’ compilation errors, its overall 

research approach and results are similar to this study. In this study, targeted feedback messages 

were designed and provided for both common compilation and test errors. The data of this study 

revealed that the 15 common compilation errors accounted for 92% of all compilation errors. For 

the test errors, 54% of them were related to those difficult problems. The 10 common test errors 

accounted for 39% of all test errors of the difficult problems. Therefore, one important step of 

designing the feedback component of an automated assessment system is to identify the common 

errors students make, which are the representatives of common difficulties students encounter in 

learning to programming.  

In contrast, two recent studies reported conflicting results (Denny et al., 2014; Pettit et 

al., 2017). Both studies examined the effects of enhanced compiler error messages and indicated 

that no significant effects were found. However, the research design of the two studies was 

different from Becker et al.’s (2016) and this study and may account for the lack of significant 

results. In the study of Denny et al. (2014), students only had to complete the method body of a 

given method header. Hence, students did not have to write a program from scratch and would 

not encounter all possible Java compilation errors (Becker et al., 2016). The study of Pettit et al. 
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(2017) also indicated that enhanced compiler error messages did not benefit students. However, 

their feedback messages only covered 30% of compilation errors, which may make the effects of 

their feedback insignificant. While many factors may contribute to the ineffectiveness of 

feedback in the two studies, one key issue is that the feedback messages they offered may not 

have addressed the common student errors in their instructional settings. Without a good 

identification of common student errors that can account for most student errors, the feedback 

system of an automated assessment system may not work as expected. As the visibility model of 

feedback suggests, designing effective feedback requires precisely analyzing and understanding 

learners’ current knowledge states (Hattie & Gan, 2011; Hattie & Timperley, 2007). If the design 

of feedback messages is not based on students’ current knowledge states and only addresses a 

limited number of student errors, the feedback may not be as effective as expected. 

Evolution of Students’ Misconceptions 

The qualitative analysis of students’ solutions of four selected cases noted that when 

improving the code, students of group 2 made fewer intermediate incorrect solutions than 

students in group 1. In other words, the targeted feedback messages appear to have helped to 

promote conceptual change. According to the qualitative analysis, students of group 1 usually 

noticed the error but often only fixed part of the error in the next attempted solution (see Figure 

4.9b for an example). In contrast, with the targeted feedback message, students of group 2 often 

could completely fix the same error in the revised solution (see Figure 4.9a for an example). 

According to conceptual change theories (Taber, 2013; Vosniadou, 1994; Vosniadou & 

Skopeliti, 2014), before students develop correct understanding of an academic concept, they 

may gain certain intermediate states of knowledge because of the conflicts and interactions 

between their existing knowledge and the new concept. Such intermediate states of knowledge 

are called melded concepts (Taber, 2013) or synthetic models (Vosniadou & Skopeliti, 2014) and 

consist of both correct and erroneous knowledge elements (diSessa, 2014). From this viewpoint, 

both students of group 1 and 2 formed certain melded concepts, but the targeted feedback 

messages might have helped students of group 2 correct the erroneous knowledge elements and 

reduce the intermediate states. Conceptual change is an evolutionary process of correcting and 

enhancing existing knowledge elements and establishing and refining the relationships among 

conceptions (Abimbola, 1988; diSessa, 2013). Therefore, when providing feedback for students, 
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it is important to analyze students’ possible melded concepts and consider their (mis)conceptions 

as resources, rather than trying to replace them (Smith et al., 1994).  

In addition, the qualitative analysis revealed that quantitative analysis in this study failed 

to detect certain improvements in student code, and the targeted feedback messages might have 

worked better than the quantitative results suggested. When analyzing the two feedback message 

cases with the worst improvement rates, the results showed that the quantitative analysis labeled 

some solutions as “not improved” even though the error related to the feedback was fixed 

because other errors were still present. This is a limitation of quantitative analysis (Fields et al., 

2016) and also highlights the value of qualitative analysis of student code. Therefore, it is 

important to find new techniques or algorithms to improve the accuracy of the quantitative 

analysis, because manually conducting qualitative analysis of every student solution is time-

consuming and difficult.  

Implications 

An effective CS teacher needs to have both knowledge of the subject matter and 

pedagogical content knowledge (Hubwieser, Magenheim, Mühling, & Ruf, 2013; Shulman, 

1986; Yadav, Berges, Sands, & Good, 2016). Pedagogical content knowledge (PCK) refers to the 

knowledge that enables teachers to transform instructional content into a comprehensible form to 

students (Shulman, 1986). One key component of teachers’ PCK is their knowledge of students’ 

misconceptions (Carlsen, 1999; Saeli, Perrenet, Jochems, & Zwaneveld, 2011; Shulman, 1986). 

Unfortunately, research on CS teachers’ PCK is limited (Saeli et al., 2011; Yadav et al., 2016), 

and CS teachers often lack sufficient understanding of student misconceptions (Brown & 

Altadmri, 2017; Guzdial, 2015). CS teachers’ teaching and computing experience sometimes 

lead them to form “misconceptions” of common student misconceptions. Further, as experts, 

they sometimes ignore the difficulties novice students have (Brown & Altadmri, 2017; Guzdial, 

2015). The results of this study suggest a data-driven approach to understanding and addressing 

student misconceptions, which is using student data in automated assessment systems, has the 

potential to help teachers build a more accurate understanding of their students’ common 

misconceptions and develop their PCK. 

Automated assessment systems have been widely used in college-level introductory 

programming classes (Douce et al., 2005; Pettit et al., 2017). They can not only reduce teachers’ 
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grading workload but also collect a large amount of student data including all errors students 

make. The student data in automated assessment systems can be a good resource for analyzing 

student misconceptions. Previous studies have used such data and catalogued a broad range of 

misconceptions of college students (Altadmri & Brown, 2015; Becker, 2016; Denny et al., 2012). 

However, college CS1 instructors often have limited knowledge of students’ misconceptions 

(Brown & Altadmri, 2017; Spohrer & Soloway, 1986). Hence, it is important for college CS1 

instructors to utilize the data in automated assessment systems to understand their students’ 

common misconceptions. Researchers and developers have already developed a variety of tools 

that can identify common student misconceptions using the data in automated assessment 

systems (Becker, 2016; Denny et al., 2012). Instead of creating new tools, college CS1 

instructors should learn to use existing tools. Meanwhile, researchers and developers should keep 

improving their tools. For example, many existing tools do not consider students’ non-

compilation errors, but the results of this study show that non-compilation errors are also 

important to understand student misconceptions. Therefore, researchers and developers of 

automated assessment systems should develop components that support identifying common 

student misconceptions using both compilation and non-compilation errors. 

As CS education has been expanding into K-12 schools, CS teachers at the pre-college 

level should also learn to use automated assessment systems and student data to understand 

student misconceptions. Because students’ misconceptions are contextually sensitive (diSessa, 

2013; Özdemir & Clark, 2007), pre-college students in different instructional settings may show 

different misconceptions. While the results of this study indicate that secondary school students 

make similar common errors to those college students, minor difference still existed, such as the 

program name error. Thus, integrating automated assessment systems with misconception 

identification components into pre-college introductory programming courses can be helpful and 

valuable. However, such systems may not always accessible to CS teachers in K-12 schools. 

Some other approaches may also be useful to help teachers understand student misconceptions in 

introductory programming. For example, a professional development program with a focus on 

common student misconceptions may benefit teachers who have limited knowledge of student 

misconceptions (Qian, Hambrusch, Yadav, & Gretter, 2018). The development and use of a 

concept inventory is another potential way to help teachers evaluate students’ understanding of 

fundamental programming concepts (Goldman et al., 2010; Taylor et al., 2014). 
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In addition to identifying student misconceptions, teachers also need to have the ability to 

address misconceptions. Adding a well-designed feedback system to an automated assessment 

system can be one good solution. Some researchers have developed and studied the systems that 

can offer automatically generated feedback using artificial intelligence techniques (Price et al., 

2017; Rivers & Koedinger, 2017). While such systems seem to be an ideal solution to help 

teachers address student misconceptions, they are yet not mature and can only handle simple 

programs. According to the results of this study and previous research, the key to provide 

effective feedback for addressing student misconceptions is an accurate understanding of 

students’ common misconceptions. While students may make a variety of errors in their code, a 

small number of common errors account for most student errors. Hence, no matter whether a 

feedback system exists, teachers should focus on common student errors and difficult problems 

identified by the student data. The ability to effectively identify and address common 

misconceptions based on student data will be vital to quality CS teachers. 

Limitations and Future Research Directions 

While plausible results were found, this study has several limitations. First, the 

generalizability of findings from this study is limited. In this study, participants were high-ability 

students. Their misconceptions may not be representative of the population of secondary school 

students. Further, because the students were participating in a non-school-based summer 

enrichment program that was not formally graded, students may not have been motivated to 

learn. Hence, future research on ordinary middle and high school students in formal educational 

settings is necessary to better understand secondary school students’ common misconceptions. In 

addition, as two Advanced Placement (AP) CS courses, AP Computer Science Principles and AP 

Computer Science A, have been developed for high-ability high school students, conducting 

research on students who take the AP CS courses in formal educational settings is important to 

better understand common misconceptions of high-ability students. 

In addition, the sample size of this study was relatively small. In this study, group 1 and 2 

had only 13 and 10 students respectively. Previous studies on college students often had a sample 

of more than 100 students (e.g. Becker, 2016). While this study included students from summer 

2016 to obtain a more complete understanding of common student misconceptions, the analysis 

of the effects of feedback was limited to the data of the 23 students of summer 2017. Because of 
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the small sample size, certain feedback messages were only triggered a limited number of times. 

For example, CFB5 and TFB7 were only triggered once in this study (see Table 4.4 and 4.5). 

Thus, with such limited data, the effects of such feedback messages could not be determined. 

Future research should use a larger sample to better examine the effects of feedback. 

Another limitation is there was no control group in this study. Although the use of a 

control group is not typical in design-based studies, without a control group it is not possible to 

establish a causal relationship between the observed changes and the intervention. While the 

results of this study suggest that with targeted feedback messages students are more likely to 

correct errors in their code, without a strictly controlled experiment it is difficult to determine 

whether the feedback causes the improvements. Students of the two groups might have 

differences in prior knowledge of programming, existing math knowledge, and other factors. It is 

possible that there existed certain confounding variables that resulted in the higher improvement 

rates of group 2 students, rather than the feedback. Thus, to further investigate the effects of 

feedback, it is essential to implement a study with both treatment and control groups by 

controlling variables such as students’ gender, previous computing experience, academic 

performance in other subjects, and so forth.  

The programming problems in Mulberry are also a limitation because they may not 

reveal all possible student misconceptions. For example, no problems in Mulberry were related 

to the concepts Classes and Objects, which have been shown to be problematic for beginners in 

previous studies. Therefore, it is important to expand the problem pool of Mulberry to cover a 

broader range of possible concepts that are included in a typical introductory Java programming 

course. Further, when Mulberry has more problems that cover more programming concepts, the 

course design should be revised and expanded. The course in this study was designed for a two-

week summer camp and only covered a limited number of programming concepts. During the 

two weeks, most students could only solve a small number of problems in Mulberry. Certain 

common misconceptions may have remained hidden, even though relevant problems were 

included in Mulberry. For example, the concept Loops has been shown to be difficult for 

novices, but no difficult problems in this study were related to Loops, because only a few 

students in this study solved problems related to Loops. Hence, both the problem pool of 

Mulberry and the course time should be expanded to cover more programming concepts so that 

future research may be able to reveal additional student misconceptions.  
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Another limitation of this study is that the categorization of “improved” and “not 

improved” student solutions may not accurately reflect student performance. According to the 

qualitative analysis of student programs, certain improvements in students’ code, such as fixing a 

common error, were not detected by the categorization algorithm used in this study. Hence, 

future research is needed to see if a more accurate categorization algorithm can be developed. 

For example, machine learning techniques might be implemented to analyze student code 

directly to identify improvements. 

Finally, the results of this study also provide potential directions for future studies on 

student misconceptions in introductory programming. One key feature of this study was the use 

of students’ non-compilation errors. The results indicate the importance and value of these non-

compilation errors in understanding student misconceptions. Hence, future research should pay 

more attention to students’ non-compilation errors and examine possible ways to reveal and 

analyze various kinds of non-compilation errors, such as logic errors, run-time errors, and so on. 

Furthermore, many factors may affect the effectiveness of feedback, such as students’ 

confidence, the difficulty of the problem, time of reading the feedback, and so on. Future 

research should investigate the impacts of these variables on the effectiveness of the feedback. 

As natural language may interfere with the learning of programming, future research should 

examine common misconceptions related to language. For example, the performance of non-

English speakers might be compared to native English speakers to see whether they show the 

same misconceptions and how their English ability impacts their learning of programming. 

Conclusions 

With the expansion of computer science education, CS teachers in K-12 schools should 

be cognizant of student misconceptions and be prepared to help students establish accurate 

understanding of computer science and programming. This exploratory design-based research 

study implemented a data-driven approach to identify secondary school students’ misconceptions 

and provide targeted feedback to promote students’ conceptual change in introductory 

programming. A total of 15 common compilation errors and 10 common test errors were 

identified in this study. The results showed that these common errors accounted for a large 

proportion of all errors. The results suggest that identifying common errors, both compilation 

and test errors, is important to teach introductory programming courses. Based on these common 
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errors, seven underlying student misconceptions were identified. A variety of factors that may 

contribute to the misconceptions were discussed, including students’ deficient programming 

knowledge, prior math knowledge, everyday experience, and lack of strategic knowledge. 

Possible instructional strategies to address these student misconceptions were also discussed. 

Based on students’ common errors and underlying misconceptions, targeted feedback 

messages were designed and provided for students. The quantitative analysis found that with 

targeted feedback students were more likely to correct the errors in their code. The qualitative 

analysis of students’ solutions revealed that when improving the code, students receiving 

feedback made fewer intermediate incorrect solutions. In other words, the targeted feedback 

messages may help to promote conceptual change. The results suggest that designing effective 

feedback for promoting conceptual change requires precisely analyzing students’ current 

(mis)conceptions. Hence, this study proposes a data-driven approach to understand and address 

student misconceptions, which is using student data in automated assessment systems, to both 

improve student learning of programming and help teachers build accurate understanding of their 

students’ common misconceptions and develop their PCK. Researchers and developers of 

automated assessment systems should develop components that support identifying common 

student misconceptions using both compilation and non-compilation errors. No matter whether 

the automated assessment system has a feedback system, teachers should utilize common student 

errors and difficult problems identified by the student data to support and improve their 

instruction. 

These days, computer science education is expanding quickly, but research on CS 

teachers’ PCK is limited. Digital tools, such as automated assessment systems, definitely can be 

useful and supportive in teaching CS courses. The findings of this exploratory study showed 

evidence of the power of digital tools. However, more research is needed to make technology 

benefit more CS teachers. One issue of this study is that the current quantitative analysis method 

used in this study may miss certain improvements in students’ code. The next step of research 

should focus on finding more accurate analysis methods to analyze students’ improvements in 

coding. 
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APPENDIX A. COURSE SYLLABUS 

Programming and Computational Thinking 
Summer Residential Syllabus 

Teacher: Yizhou Qian 

 

 

Goal: 

This course will help students learn the fundamental syntax of Java programming. 

Meanwhile, this course focuses on the development of students’ computational thinking, which 

is the skill of the 21st century. After receiving this course, students at least will able to design 

programs to solve simple problems, such as some math problems which are difficult to solve by 

hand. In addition, the course is a good preparation of AP CS A course. 

 

Teaching Methods: 

• Project-based 

Students will learn Java through completing an individual project. Every student needs to 

design a game and after finishing this game, they could master most of the syntax of 

programming. Then they will start a team project according to their interest and programming 

ability. 

• Learning scaffolding by technology-based learning environment 

A learning support system to help students practice their programming skill will be used. 

This system is game-based designed. When they complete the learning tasks in the system, 

students not only improve their programming skill, but also the computational thinking. 

 

Week 1 
Day / Date Topic  

Day 1 ➢ Introduction about the course 

➢ Build your first program 

Day 2 ➢ Introduction to Java Programming 

➢ Variables 

➢ Operators & Operations 

➢ Free Practice  

Day 3 ➢ Review the learned content 

➢ Conditionals (If Statements) 

➢ Free Practice 

Day 4 ➢ Review the learned content 

➢ Loops (While Loop) 

➢ Free Practice 

Day 5 ➢ Review the learned content 

➢ Loops (For Loop) 

➢ Free Practice 
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Week 2 
Day Topic  

Day 6 ➢ Review the learned content 

➢ Introduce and Work on the Individual Project 

Day 7 ➢ Work on the Individual Project 

➢ Presentations 

Day 8 ➢ Introduce and Work on the Secret Message Project 

➢ Free Practice 

Day 9 ➢ Introduce and Work on Final Project - Gladiator 

➢ Test Final Projects 

Day 10 ➢ Revise Final Projects 

➢ Gladiator Fights 

➢ Course Review 
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APPENDIX B. FEEDBACK MESSAGES 

Feedback for Common Compilation Errors 

# Feedback Message Relevant Error 

CFB1 You may have mismatched or missing braces {}, 

quotation marks "", parens (), or brackets [] in 

your code. Make sure you have them in pairs. 

CE4: class expected 

CE5: reached end of file 

CE7: ) expected 

CE9: identifier expected 

CFB2 You may have typos, code in wrong place, or 

incomplete code in your program. Make sure you 

use and spell variables and statements correctly. 

CE1: cannot find symbol 

CE6: not a statement 

CE8: illegal start of expression 

CE13: illegal start of type 

CFB3 You may miss semicolon ; somewhere in your 

code. Check if you use semicolon ; appropriately. 

CE2: ; expected 

CFB4 The name of your program is wrong! CE3: program name error 

CFB5 The type of a variable has to match its value. 

Your program may have mismatched type and 

value of variables. The following code provides an 

example of this error: 
// Try to assign String to int 
int a = in.nextLine(); 
// Try to assign int to String 
String b = in.nextInt(); 

CE10: incompatible types 

CFB6 A variable can only be defined once. Your 

program may define a variable twice. The 

following code provides an example of this error: 
// Define variables 
int a = 10; 
int b = 20; 
// Try to define the variable a again 
int a = b + 30; 

CE11: variable is already 

defined 

CFB7 You may use operator(s) in a wrong way! CE12: incorrect use of operators 

CFB8 You may try to assign a double value to an int 

variable. This leads to a possible loss of precision. 

The following code provides an example of this 

error: 
double pi = 3.14; 
// assign double to int 
int b = 2 * 2 * pi; 

CE15: possible loss of precision 
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Feedback for Common Test Errors 

# Feedback Message Relevant Error 

TFB1 The user may enter a number such as 2.3. Your 

program has to read a double instead of an int.  

The following code may help you solve your 

problem: 
Scanner in = new Scanner(System.in); 
double radius = in.nextDouble(); 

TE1: Mismatched input 

(Problem: Area of Circle) 

TFB2 You may forget to use String.format("%.2f", 

area) to display only 2 decimal places of a double. 

Or you print the wrong variable.  

Here is the example code to solve this issue: 
String result = String.format("%.2f", area); 
System.out.println( result );  

TE2: Wrong decimal places 

(Problem: Area of Circle) 

TFB3 There is a space after the comma , 

There is an exclamation mark ! at the end of the 

output. 

TE3 Missing punctuation 

(Problem: Say Hi to Anyone) 

TFB4 An integer divided by another integer gives you an 

integer in Java. For example, 11 / 2 gives 5. 

However, 11 / 2.0 gives you 5.5 

The following code may help you solve your 

problem: 
double s = (a + b + c) / 2.0; 

TE4: Integer division issue 

(Problem: Area of Triangle) 

TFB5 You may forget to use String.format("%.2f", 

area) to display only 2 decimal places of a double. 

Or you print the wrong variable.  

Here is the example code to solve this issue: 
String result = String.format("%.2f", area); 
System.out.println( result );  

TE5: Wrong decimal places 

(Problem: Area of Triangle) 

TFB6 Please try the input cases such as 1 4 7 and 1 4 4 to 

check the output of your program. 

You may want to consider the problem in this way -

(b*b) - 4*a*c is called Discriminant 

 When Discriminant is positive, there will be 

two solutions. 

 When Discriminant is zero, there will be only 

one solution. 

 When Discriminant is negative, there will be 

no answer. 

Note: you should not use Math.sqrt() on a negative 

number, e.g., Math.sqrt(-3.14). 

TE6: Inappropriate comparison 

(Problem: Quadratic Equation 2) 

TFB7 If there are two different roots, print the smaller one 

the first line and the larger one on the second line. 

TE7: Wrong output 

(Problem: Quadratic Equation 2) 

TFB8 Note: The user will only enter one integer with 

three digits (e.g., 100, 911). 

Try to use operators such as / (Division) and % 

TE8: Mismatched input 

(Problem: Sum of Digits) 
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(Modulus) to get each digit of the integer. For 

example: 

234 / 100 will give 2 

234 % 100 will give 34 

234 % 10 will give 4 

TFB9 In this problem, the user will enter two integers. 

Your program failed to read two integers from the 

user.  

The following code is an example of reading two 

integers: 
Scanner in = new Scanner(System.in); 
int a = in.nextInt(); 
int b = in.nextInt(); 

TE9: Mismatched input 

(Problem: How Old Are We?) 

TFB10 Your program may not have output in some cases. 

Try the input cases 2 3 3 and 7 7 7 and fix the 

problems of your program. 

TE10: Forgot Special Cases 

(Problem: Who is Max?) 
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